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a b s t r a c t

Benefits of Internet of Things and cloud–fog-edge computing are associated with the risks of confiden-
tiality, integrity, and availability related with the loss of information, denial of access for a long time,
information leakage, conspiracy and technical failures. In this article, we propose a configurable, reliable,
and confidential distributed data storage scheme with the ability to process encrypted data and control
results of computations. Our systemutilizes Redundant ResidueNumber System (RRNS)with newmethod
of error correction codes and secret sharing schemes. We introduce the concept of an approximate value
of a rank of a number (AR), which allows us to reduce the computational complexity of the decoding from
RNS to binary representation, and size of the coefficients. Based on the properties of the approximate
value and arithmetic properties of RNS,we introduce AR-RRNSmethod for error detection, correction, and
controlling computational results. We provide a theoretical basis to configure probability of information
loss, data redundancy, speed of encoding and decoding to cope with different objective preferences,
workloads, and storage properties. Theoretical analysis shows that by appropriate selection of RRNS
parameters, the proposed scheme allows not only increasing safety, reliability, and reducing an overhead
of data storage, but also processing of encrypted data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

According to the IT company ‘‘Industrial Development Corpora-
tion’’, the total amount of data in the world has increased by nine
times within five years (Gantz & Reinsel, 2011) [1]. This number is
expected to double at least every two years.

A number of challenges arise from data capture and data pro-
cessing. Novel techniques and technologies to excavate and store
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data to benefit our specified purposes are being created and de-
veloped. Data-intensive science, especially, data-intensive com-
puting, Internet of Things (IoT), edge computing, cyber–physical
systems, etc., is coming into play providing tools to aggregate,
store, and process data (Ahmed et al., 2017) [2].

Over the last decade, there has been considerable interest to
challenge this tendency by using Residue Number System (RNS)
(Chang et al., 2015) [3].

Big data is defined as high-volume, high-velocity, and/or high-
variety information assets that require new forms of processing to
enhance decisionmaking, insight discovery, and storage optimiza-
tion.

Addressing big data is a challenging task required a large
computational infrastructure to ensure successful data storage,
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processing and analysis. Nowadays, well-known cloud storage
providers, such as Dropbox, Google Drive, Copy, AmazonS3, Sky-
Drive, etc., are widely used in various spheres of human life to
address these challenges.

IoT provides technologies that deliver connectivitymechanisms
to IoT devices, mobile and cloud-based applications, and generate
data to be stored, analyzed, and act based on it.

The design of distributed big data storage systems has to take
into account that data are numerous, cannot be categorized into
regular relational databases, and should be captured and processed
rapidly.

Traditional systems store data in structuredRelational DataBase
Management Systems (RDBMS), Hadoop File Systems (Shvachko
et al., 2010) [4], replication (Ghemawat et al., 2003) [5], etc.

Intensive and extensive studies examine different aspects of
cloud data storages. However, mitigating risks of confidentiality,
integrity, availability, etc. has not been adequately addressed in the
scientific literature.

Zhang et al., 2013 [6] discussed the problem of preserving the
privacy of intermediate datasets in cloud computing. The authors
argued that encrypting all intermediate datasets in the cloud is
neither computationally effective nor cost effective because an
encryption and decryption of data take a long time.

The Cloud Security Alliance (CSA) presented top 10 challenges
of data security and privacy (Mora et al., 2012) [7]. CSA detects
numerous deliberate and accidental threats (Hubbard and Sutton,
2010) [8].

Deliberate threats include unauthorized access to the informa-
tion, interception, falsification, forgery, hacker attacks, etc. CSA
states that, in recent years, the number of unauthorized accesses to
the information processed and stored in the clouds is dramatically
increased. Cryptographic protocols and error correction codes can
be used to reduce this risk. However, the use of classical symmetric
and asymmetric ciphers requires large computational power and is
not applicable to mobile devices (Singh et al., 2017) [9].

Accidental threats include user errors, carelessness, curiosity,
etc. The information control and protection system based on the
proactive concept can be used. The proactive concept includes the
simultaneous use of weighted secret sharing scheme based on
RRNS, encryption keys, and checksums for monitoring obtained
results.

An alternative way to ensure information confidentiality is
to use homomorphic encryption based on RNS (Cheon et al.,
2015) [10], (Tchernykh et al., 2016) [11].

Performance and scalability are two important factors on big
data processing. The storage infrastructure has to provide reliable
storage spacewith powerful access interface for query and analysis
(Lynch 2008) [12].

Distributed storage can be based on multiple clouds. Usually,
data is divided into multiple pieces to be stored at different clouds
to ensure availability in case of failure. However, failures of dis-
tributed storage may cause inconsistency among different copies
of the same data (Ghemawat et al., 2003) [5].

One can use large databases. In this case, for high performance,
data processing and analysis have to be carried out by parallel
computing (Fernández et al., 2014) [13].

Chen and Huang 2013 [14] proposed a modified framework of
MapReduce using full homomorphic encryption. The main draw-
backs of this framework are data redundancy, computational com-
plexity of data encryption algorithms, and low reliability. To elimi-
nate these drawbacks, (Celesti et al., 2016) [15] proposed a reliable
cloud storage system based on RNS.

In this paper, we focus on configurable and reliable RRNS sys-
tems in multi-cloud environments to ensure security, robustness,
confidentiality, and efficient functionality.

Themost resource-consuming operation in the implementation
of RNS to binary conversion is the operation of finding RNS residue

from dynamic range. To increase efficiency of data processing and
decrease energy consumption of IoT devices during data encoding
and decoding, we use RNSmodules of a special form 2b

±α, which
allow to find a residue of division with linear complexity.

We propose Approximation of the Rank (AR) that allows to
substitute operations of finding residue by taking higher bits of
a number based on the introduced function of computing the
approximate rank of a RNS number. Based on the properties of the
approximate value and arithmetic properties of RNS, we introduce
AR-RRNS method for error detection, correction, and controlling
computational results.

This paper is organized as follows. We review distributed stor-
age systems for IoT-clouds in Section 2. In Section 3, we describe
the main model of data storage. Section 4 presents configurable
parameters used in our method. Section 5 introduces the rank of
RNS number and its approximation. Section 6 focuses on error
detection, correction and control of arithmetic operations, data
processing and transfer protocol for wireless networks in IoT.
Section 7 describes our configurable model. The conclusions and
future work are discussed in the last Section 8.

2. Related work

In this section, we discuss the distributed data management
technologies.

2.1. Distributed storage system

A variety of approaches can be used to construct a distributed
system for storage and processing. Several of them are based on
the cloud and grid computing paradigms (Vouk 2008) [16]. These
infrastructures have common characteristics, but also principal
differences.

The use of clouds for data storing requires a number of factors
such as security, reliability and scalability under limited Internet
connection bandwidth (Mora et al., 2012) [7], (Hubbard & Sutton,
2010) [8], (Ahmed & Rehmani, 2017) [17].

In order to provide quick access to distributed data and ensure a
high degree of reliability, availability and scalability, (Chang et al.,
2008) [18] proposed Bigtable system based on replication of not
encrypted data, without providing privacy and data security.

An alternative mechanism is Hadoop and MapReduce based on
splitting the dataset into independent chunks that are processed
in parallel and reducing them (Dean & Ghemawat, 2008) [19].
However, as shown by (Herodotou et al., 2011) [20], its main
drawback is the low efficiency.

Not relational databases (NoSQL) that take into account hetero-
geneity of unstructured data become popular (Leavitt, 2010) [21].
However, twomost popular NoSQL databases, Cassandra andMon-
goDB, have problems with security and privacy of data (Okman
et al., 2011) [22].

To solve these problems, the classic data encryption can be
used, but it is not applicable in the case of data processing. It does
not allow intensive analysis and processing of the data, and takes
significant computing resources to perform the encryption and
decryption of data.

An alternative solution is the homomorphic encryption intro-
duced by (Rivest et al., 1978) [23] that allows encrypted data
processing. Significant progress in the field of homomorphic en-
cryption was achieved after the publication of (Gentry, 2009) [24],
in which the fully homomorphic encryption is proposed. Classic
fully homomorphic encryption built on ideal lattices leads to a
large redundancy of stored data, which makes it inapplicable to
big data storage systems. Other homomorphic encryption method
is based on RNS that enables computational security and reliability
(Section 2.4).
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2.2. Applications in distributed environments

There is wide range of approaches that are used for distributed
data intensive computing (Venugopal et al., 2006) [25].

Distributed Data Base (DDB) stores data on various sites of
a computer network and uses logics to organize the set of data
(Ozsu & Valduriez, 1991) [26]. There are two ways to construct
DDBs. Top-down approach takes a database and distributes it over
various sites.While bottom-up approach unites number of distinct
databases with one interface. Themain field of application of DDBs
is structured data storage, therefore, it is not applicable to arbitrary
datasets, such as Big data.

Content Delivery Network (CDN) (Dilley et al., 2002) [27] is a
set of (non-origin) servers that cache the data, satisfy the client
requests to the database, and reduce theworkload of origin servers.
We can state the following principles of CDN: load balancing,
bandwidth conservation and time efficiency. However, CDNs are
notwidely used in practice due to the fact that they are not flexible.

The main principles of P2P Network (Oram, 2001) [28] are
scalability and reliability achieved by decentralized structure and
redundancy, resources sharing and anonymity. P2P networks are
efficient in providing fast access to files to a group of peers. Never-
theless, most P2P networks do not allow integrated computations
and serve as data distribution environment.

2.3. Approaches for reliability and confidentiality

When clouds are used for data storage, reliability, scalability,
security, confidentiality, and data processing in the encrypted form
should be taken into consideration. These characteristics are also
crucial for mobile devices, where technical characteristics and
energy consumption are limited (Ahmad et al., 2017) [29].

Tchernykh et al., 2016 [9] show that distributed data stor-
age under the conditions of uncertainty in cloud computing can
use data replication, secret sharing schemes, Redundant Residue
Number System (RRNS), erasure codes, regenerating codes, and
homomorphic encryption.

Below, we describe main known methods of organizing dis-
tributed data storage in clouds and grids (Table 1) by comparing
the following properties: reliability, scalability, availability, confi-
dentiality, integrity, privacy, and homomorphic encryptions. These
properties are briefly described in Appendix. L denotes the data
size.

The most effective in terms of complexity is the method from
work (Ghemawat et al., 2003) [4]. However, its main disadvantage
is that the data is stored in an unencrypted form, which leads to a
limited applicability.

An alternative approach to build a reliable storage system is to
use error correction codes based on RRNS, Erasure codes (Dimakis
et al., 2010) [35], and Regenerating codes (Lin et al., 2014) [52].
However, Erasure and Regenerating codes do not allow to pro-
cess the encrypted data. For data processing, homomorphism is
an important property of the system, since it allows processing
encrypted data without additional computational cost for data
decoding (Rivest et al., 1978) [23].

A significant breakthrough in the field of homomorphic encryp-
tion has occurred due to the work of (Gentry 2010 [37]), which
proposed the fully homomorphic encryption scheme for perform-
ing both addition and multiplication with the cipher text. The
main disadvantages of the proposed algorithm is a significant data
redundancy and lack of tools to control the results of arithmetic
operations.

In Table 1 particular attention deserves distributed data storage
of (Gomathisankaran et al., 2011) [38], which assures the safety,
confidentiality, homomorphism, reliability, and scalability of data.
The authors proposed two approaches to construct systems based

onhomomorphic secret sharing schemes in RRNS. RRNSmoduli are
secret keys stored by a user. Data processing leads to exponential
increase in the load of the network and memory, and makes it
inapplicable in practice.

Secret sharing schemes proposed by (Asmuth & Bloom,
1983) [53] and (Mignotte 1982) [54] ensure the security and con-
fidentiality of data. RRNS has similar properties to the Mignotte
secret sharing scheme. Its arithmetic properties allow controlling
results of data processing.

2.4. Redundant residue number system

RRNS represents original numbers as residues with respect to a
moduli set. Thus, the number is split into smaller numbers, which
are independent.

Let p1, p2, . . . , pn are pairwise coprime numbers used asmoduli
set of RRNS, and n = k+r . Then RRNS range is defined P =

∏k
i=1pi.

Data is integer number X , where X ∈ [0, P − 1). X is defined in
RRNS as a tuple X

RRNS
→ (x1, x2, . . . , xn), where xi = |X |pi represents

the remainder of division of X by pi.
In RRNS settings (k, n), using data from any k remainders from

n, we can recover r = n − k data.
According to RRNS property, if the number of control modules

is r , then the system can detect r and correct r −1 errors. For error
isolation and correction, projection methods are used, where the
number of calculated projections grows exponentially depending
on the r value. As a result, RRNS is impractical without significant
optimization.

Celesti et al., 2016 [15] proposed the use of RRNS for reliable and
scalable cloud storage systems. Operations can be accomplished on
them separately and concurrently, which makes the computations
simpler and faster. Redundancy of residues allows to build system
with multiple error detection and correction.

It also allows to perform arithmetic operations with the follow-
ing property.

X∗ Y = (x1, x2, . . . , xn) ∗ (y1, y2, . . . , yn) =(
|x1 ∗ y1|p1 , |x2 ∗ y2|p2 , . . . , |xn ∗ yn|pn

) (1)

where * denotes one of the operations: addition, multiplication,
and subtraction. It holds: xi = |X |pi , yi = |Y |pi , for all i = 1, n.

Since representation of numbers in RRNS can be seen as secret
sharing scheme, we can obtain computationally secure data stor-
age. Based on RRNS property Eq. (1), we can state that the proposed
system is a homomorphic cypher.

Gomathisankaran et al., 2011 [38] studied fully homomorphic
cypher systems based on secret sharing in RNS. However, it should
be noted that it is not practical to use RNS moduli set as the
secret keys. It leads to high redundancy and resource intensive
decoding that can be more complex than the original problem. As
a consequence, we assume that RRNS moduli set can be used as a
public key.

Cheon et al., 2015 [10] offered an alternative way of construct-
ing homomorphic encryption system in RNS. They proposed a gen-
eralization of DGHV (Dijk, Gentry, Halevi, and Vaikuntanathan) al-
gorithm,which allows to improve characteristics of computational
complexity and redundancy. This scheme is based on the ideas of
the secret sharing scheme in RRNS of (Asmuth & Bloom, 1983) [53].
The proposed algorithm has a high redundancy, compared with
schemes in the classic RRNS.

Matutino et al., 2014 [55] presented efficient methods that al-
low to encode the data with minimal computational costs. Moduli
set of the form 2bi ∓ αi is used to efficiently perform scaling and
arithmetic operations over encoded data.

In order to determine the problems in the data storage and data
processing, we use properties of error detection and correction
in RNS considered by (Barsi & Maestrini, 1974) [56]. Modification
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Table 1
Related work summary.

Method Properties

Availability Confidentiality Homomorphic Integrity Privacy Reliability Scalability Encryption Decryption

Abu-Libdeh et al., 2010 [30] • • O(L log L) O(L log L)
Adya et al., 2002 [31] • • • • • • O(L2) O(L2)
Ateniese et al., 2006 [32] • • • • O(L) O(L2)
Bessani et al., 2013 [33] • • • • • O(L) O(L)
Bowers et al., 2009 [34] • • • • • O(L2) O(L2)
Celesti et al., 2016 [15] • • • • O(L2) O(L2)
Dimakis et al., 2010 [35] • • • • • O(L2) O(L2)
Erkin et al., 2012 [36] • • • O(L2) O(L2)
Gentry, 2010 [37] • • O(L6 log L) O(L2 log L)
Ghemawat et al., 2003 [5] • • • • O(1) O(1)
Gomathisankaran et al., 2011 [38] • • • • • • O(L2) O(L2)
Kong et al., 2010 [39] • • • • • O(L log L) O(L log L)
Li et al., 2010 [40] • • • • • • O(L2) O(L2)
Lin&Tzeng 2012 [41] • • • • • • O(L log L) O(L log L)
Pang&Wang 2005 [42] • • • • • • O(L2) O(L2)
Parakh&Kak2011 [43] • • • • • • O(L) O(L log2 L)
Parakh&Kak2009 [44] • • • • • O(L) O(L log2 L)
Ruj et al., 2011 [45] • • • • O(L2) O(L2)
Samanthula et al., 2015 [46] • • O(L2) O(L2)
Sathiamoorthy et al., 2013 [47] • • • O(L log2 L) O(L log2 L)
Shah et al., 2012 [48] • • • O(L) O(L)
Wang et al., 2012 [49] • • • • • • O(L3) O(L3)
Wylie et al., 2000 [50] • • • • O(L3) O(L3)
Yang et al., 2004 [51] • • • • O(L2) O(L2)

and improvements of detection and error correction in the RRNS
are considered in (Goh & Siddiqi, 2008) [57], (Chervyakov et al.,
2016) [58], etc.

The common issue for the majority of the proposed works is
to detect and correct one error. When reliability is provided for
a single computer, the detection and correction of a single error
is sufficient. However, when we consider big data, it is necessary
to have efficient algorithms for detecting and correcting several
errors.

The RRNS scheme for data storage provides a secure, reliable
and scalable storage. It has properties of error correction codes, and
two cryptographic primitives: secret sharing schemes and homo-
morphic encryption, which makes it useful for data processing in
the encrypted form.

2.5. IoT security

Current designing solutions of the Internet of things concept,
are based on use a large number of sensors collecting and passing
data, measurement devices, computing devices, games consoles,
smart phones, appliances with embedded processors running ap-
plications, etc. Smart things dial with providing domestic func-
tions, entertainment, health care, appliance and application con-
trol, etc. (Moosavi et al., 2016) [59], (Rahmani et al., 2017) [60].

Various studies are performed for identifying potential privacy,
security and reliability risks and needs in such highly intercon-
nected environments. For example, CIA director David Petraeus
said that the use of data from Internet-connected household appli-
ances can be used to compile a detailed dossier on a person, which
will reveal his weaknesses and habits (Sarma et al., 2002) [61].

Given the widespread adoption of Radio-Frequency IDentifica-
tion (RFID) tag technology, it is potentially possible privacy viola-
tions due to remote monitoring of the moving objects (Weis et al.,
2004) [62], (Khan et al., 2017) [63].

On the one hand, the use of IoT leads to increased risks of
violating the privacy and leakage of confidential commercial data.
On the other hand, it leads to increased risks of DDoS attacks.
According to the analysis of the DDoS attack occurred on October
21, 2016, it became possible due to the use of a large number of
smart home appliances (DDoS 2016) [64].

Security services are fundamental to handling confidentiality,
authentication, integrity, authorization, etc., and can be imple-
mented by a combination of cryptographic mechanisms, such as
block ciphers, hash functions, or signature algorithms, and non-
cryptographic mechanisms.

The main mechanism of ensuring data security in the world
of Internet of Things is the so-called LightWeight Cryptography
(LWC). Due to things aremostly operated autonomously, to ensure
data security, it is required to use a special approach based on
LWC. Among the first studies in the field, the works of (Weis et al.,
2004) [62], (Sarma et al., 2002) [61] define technical requirements
for LWC.

A joint meeting of the Working Group on Intellectual Net-
working Architecture and Computer Security Working Group of
the National Institute of Standards and Technologies, including
Smart Grid Interoperability Panel — Cyber SecurityWorking Group
(NIST SGIP-CSWG), concerns the need for research in the field of
LWC to implement cryptographic protection of millions of devices
equipped with limited computing resources and technological re-
strictions. Due to operating and functioning conditions, as well as
the price reduction, these devices have significant limitations on
the memory, computing power, power consumptions, etc.

Since proposing the IoT concept in the late 1990s, security
experts warn of the potential risk of a large number of unprotected
devices connected to the Internet,

In December 2013, Proofpoint, an enterprise security company,
discovered the first IoT botnet. According to Proofpoint, more than
25% of the bots are running on devices other than computers,
including smart TVs, children’s monitors, and other household
appliances.

Data is exchanged over the local wireless network or via the
Internet. Wireless network allows IoT to manage remote devices
(bulbs, a kettle, video camera, etc.) without installing additional
communication infrastructure, but it imposes increased require-
ments for ensuring an appropriate level of security.

For example, strict limitations are imposed on the energy con-
sumption of cryptographic algorithms for passive smart devices,
such as RFID tags or contactless smart cards.

In accordance with the ISO/IEC standard (Hodjat & Ver-
bauwhede, 2004) [65], passive RFID tags should have an energy
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consumption level of not more than 15 µW in order to guarantee
operation of the device within a radius of 1 m. However, this
restriction limits the performance of devices.

Many of the requirements for algorithms for low-resource en-
vironments have been defined within the framework of the inter-
national standard ISO/IEC FDIS 29192 – Information technology –
Security techniques - Lightweight cryptography.

ISO/IEC 29192 defines the facilities of low-resource cryptogra-
phy to provide data confidentiality, authentication, identification,
non-repudiation, and key exchange.

Themain characteristics of the cryptographic algorithms are the
complexity and speed. Speed is a very important for many (but
not all) applications. It depends not only on the frequency of the
processor, but also on the number of cores (in the case of hardware
implementation), as cryptographic primitives are usually very suit-
able for parallelization.

We consider various options for the efficient implementation of
Advanced Encryption Standard (AES).

AES hardware implementation. The fastest implementation of
the AES algorithm demonstrates a speed of up to 70 Gb/s (Hodjat &
Verbauwhede, 2004) [65]. This implementation uses the processor
pipeline architecture and requires more than 250,000 GE (Gigabit
Ethernet). At the same time, the most compact implementation of
this algorithm requires about 2400 GE (Moradi et al., 2011) [66].

AES software implementation. For standard processors, there is
an implementation of the AES, which provides a speed of 7.6 clock
cycles per byte on an Intel Core 2 Q9550 processor, and 6.9 clock
cycles per byte on an Intel Core i7 processor (Käsper & Schwabe
2009) [67].

AES hardware and software implementation. The adoption of the
AES standard caused the development of additional commands
for Intel family processors. A similar extension of PadLock engine
exists in microprocessors from VIA Technologies. The purpose of
this extension is to accelerate applications using AES encryption,
which provides an encryption rate of about 0.75 clock cycles per
byte (Preneel, 2010) [68]. However, the use of AES for protection
of data transmission over wireless networks requires modification
codes and large computational resources to decrypt data, when
data from a large number of Internet things are processed on a fog
node.

An alternative way is to use a cryptographic primitive, which is
an algorithm for ensuring data security, correctness and reliability
of data, and, also, allows the data to be processed in the encrypted
form.

Mignotte secret sharing scheme satisfies above requirements.
This scheme has similar properties to RRNS and provides a secret
sharing scheme, detection, localization, error correction code, and
homomorphic cipher at the same time.

In edge and fog computing, the main idea is to perform compu-
tation locally, close to the source of data. In general, sending data to
the clouds is not recommended.However,when the computational
tasks cannot be performed due to the technical limitations of
devices, and if the data processing requires more energy than the
data transfer over a wireless network, the data is moved to the
clouds.

3. The RRNS distributed data processing model

To design a reliable and secure data storage based on multi-
clouds technology, we use error correction codes in RRNS. The
data storage has the following properties: homomorphic cypher,
weighted secret sharing scheme and error correction codes.

Let ith cloud corresponds to RRNSmodule pi of the form 2b
−αi,

where b is module length, and αi is small integer. The values b
and αi are chosen according to available computational resources

Fig. 1. Chunk description.

of ith cloud, demanded level of security, and the reliability (see,
Section 4).

The number of clouds is equal to n. For (k, n) settings, we can
recover r = n − k data using data from any k clouds. Since the
range of RRNS is P , where L = ⌈log2P⌉ ≈ k · b denotes the data
size.

In this scenario, each cloud provider receives a chunk of data
that consists of chunk identifier, chunk properties, projection of
the original data, and simplified digital signature. To compute the
unique identifier, we use two algorithms: hash function based on
MD5 (Wang & Yu, 2005) [69], and on SHA-3 (Pritzker & Gallagher,
2014) [70]. Collisions are avoided and the security is obtained due
to SHA-3, while fast image of data is obtained by insecure MD5.

The structure of the chunk is shown in Fig. 1.

4. Configurable parameters

4.1. The probability of information loss

Cloud-based services can crash just like any other type of tech-
nology. For example, access to information of Amazon has been
limited for a long timedue toDDoS attacks in 2009. In 2013, a series
of cloud outages was reported for Amazon, Microsoft and Google.
Technical failures and data loss due to power outages are reported
by Amazon, Dropbox, Microsoft, Google, and Yandex Disk. In the
first quarter of 2014, Dropbox experienced service outages twice.
Bankruptcy was imposed for cloud storage company Nirvanix in
2013.

To prevent and deal with DDoS attacks, web service Great-
fire.org spends up to $30,000 per day (Munson, 2015) [71]. One
of the most powerful DDoS attacks occurred in October 2016,
according to a report by (Leswing, 2016) [72]. Users could not
access their data about 11 h. According to the report of the DDoS
attacks in the first quarter of 2016 the longest attack lasted 197 h,
or 8.2 days (Kaspersky lab, 2016) [73].

Using the definition of geometric probability, probability of
denial access to the service is equal to 8.2/90 ≈ 0.09. Taking
the mean between the longest DDoS attack on web service and
event when there was no DDoS attacks, we obtain the probability
of failure to access data as the result of DDoS attacks equals to 0.05.

Considering reports about technical failures in the cloud ser-
vices, the probability of loss of information is equal to 3/365 ≈

0.01 (Gage, 2013) [74], (WCO, 2014) [75], (Wu et al., 2017) [76],
etc. Therefore, using the law of addition of probabilities and the
Bernoulli formula, we calculate the probability of failure to access
the data using a secret sharing scheme (k, n) according to the
following formula:

Pr (k, n) =

n∑
i=n−k+1

C i
n

(
0.01i

· 0.99n−i
+ 0.05i

· 0.95n−i) .
The probability of information loss for various system parame-

ters are shown in Fig. 2.
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Fig. 2. The probability of information loss versus RRNS settings (k, n).

Fig. 3. Data redundancy versus RRNS settings (k, n).

We observe that our data storage scheme provides the least
probability of data loss with RRNS settings (k, n) from (2, n) to
(n − 2, n), where n = 4, 5, . . . , 9. The highest probability of data
loss is with RNS settings (n, n).

4.2. Data redundancy

Redundancy in the big data storage is an important issue. Since
in the worst case the number of bits that need to be stored (p1 −

1, p2 − 1, . . . , pn − 1) is approximately equal to
∑n

i=1log2 pi.
The input data is L and approximately equals to

∑k
i=1log2 pi. We

calculate redundancy as the ratio of the stored encoded data and
the original data size:

n∑
i=1

log2 pi/
k∑

i=1

log2 pi.

If RNS moduli satisfy the condition

2b−1 < p1 < p2 < · · · < pn < 2b,

then the redundancy satisfies the inequality∑n
i=1 (b − 1)∑k

i=1 b
<

∑n
i=1 log2 pi∑k
i=1 log2 pi

≤

∑n
i=1 b∑k
i=1 b

=
n
k
.

Consequently, the redundancy is roughly n/k. Redundancy ver-
sus RRNS parameters is shown in Fig. 3.

Let us consider an example of (4,4) scheme with RRNS moduli
set p1 = 59, p2 = 61, p3 = 63, p4 = 64. In this case, the dynamic
range is P =

∏4
i=114511168.

Let X = 14511140 and it has 24 bits. X has the following
representation X

RRNS
→ (31, 33, 35, 36). 31 is a 5 bits number, 33, 35,

36 are 6 bits numbers. Therefore, the redundancy is (5+3·6)/24 =

23/24 < 1.
We see that the redundancy has minimal values with RRNS

settings (n, n), where n = 4, 5, . . . , 9, and less than those of the
Bigtable system (⌈(n + 1)/3⌉ , n).

4.3. Speed of data encoding

To analyze the speed of data encoding, we use the minimum
technical characteristics of VM provided by Microsoft Azure. It is

Fig. 4. The speed of data encoding (Mb/s) versus RRNS settings (k, n).

Intel Xeon R⃝ E5-2673 v.3, 2 GB of RAM, 16 GB SSD hard drive. It has
an average speed 230 bit operations per second according to tests
from (Geekbench Browser site) [77].

The coding rate changes depending on the processor perfor-
mance and number of cores. In case of z cores, the speed of algo-
rithms is increased by z times.

The main objective of data encryption algorithms proposed by
Chervyakov et al. (2016) [58] is to find the residue of division of L-
bit word by RRNS modulus of the form 2bi ∓ αi. If b1 = b2 = · · · =

bn = b, then, effective algorithm is based on the neural network of
the finite ring.

Its latest modification from work Chervyakov et al. (2016) [58]
allows to achieveO(b·log2 k) algorithmic complexity. Hence,we as-
sume that calculation of the remainder of division requires roughly
b · log2 k bit operations.

To represent L-bit number in RNS, it is required to perform an
operation of finding the remainder of division by RNS modulus n
times. Thus, total number of bit operations is n · b · log2 k. Since the
size of the input block is L ≈ k ·b bits, the number of blocks in 1Mb
is 223/L ≈ 223/(k · b). Therefore, in order to encode 1 Mb of data,
223

·n ·b · log2k/(k ·b) = 223
·n · log2k/k bit operations are required.

The speed of data encoding in MB/s can be calculated by the
formula

VC =
230

· k
223 · n · log2k

=
k · 27

n · log2k
.

The dependence of the data encoding speed from the parameters
of the scheme is shown in Fig. 4.

We see that the graph is a saw type, where themaximumvalues
of the coding rate are achieved in the schemes (n, n), andminimum
coding rates are achieved in the schemes (2, n). The user can select
the required parameters to provide the required value of the data
coding rate.

4.4. Data decoding rate

When the data is decoded with no errors, according to Chinese
Remainder Theorem (CRT) with algorithmic complexity O(L2), it
requires roughly L2 ≈ k2 · b2 bit operations. In case of r RRNS
moduli, we can detect and correct r − 1 errors.

To detect and localize the error, we use the algorithm based on
projections. To compute a projection, we use CRT, therefore, one
projection is computed in roughly L2 ≈ k2 · b2 bit operations.

Since the number of projections is Ck+1
n , to detect and localize

an error, we need Ck+1
n · k2 · b2 bit operations. To encode 1 Mb of

data, 223
· Ck+1

n · k2 · b2/(k · b) = 223
· Ck+1

n · b · k bit operations are
required. Therefore, the speed of decoding is

VD =
230

223 · Ck+1
n · b · k

=
27

Ck+1
n · b · k

.

The dependence of the data decoding speed from the parame-
ters of the scheme is shown in Fig. 5 for {b = 8, 16, 32}.
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5. Approximation of the rank of RNS number

In this section, we propose the method of RRNS to binary con-
version based on Approximation of the Rank (AR) of RNS number
based on replacement computation.

The suggested approach reduces quantity of calculated pro-
jections of the number, and replaces computationally complex
operation of division of long integers by taking the least significant
bits. It reduces the complexity from O(L · log L · log log L) to O(1).

The rank of the number in RNS is determined according to the
CRT, the value X can be calculated by the Eq. (2):

X =

n∑
i=1

Pi
⏐⏐P−1

i

⏐⏐
pi
xi − rX · P, (2)

where

rX =

⌊
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi

pi
xi

⌋
, P =

n∏
i=1

pi, Pi = P/pi

for all i = 1, n, and rX is a rank of X , which is a positive integer
that shows how many times the dynamic range of the RNS can be
increased.

From Eq. (2), it follows that to compute rX , we need to perform
expensive operation of integer division or use real numbers with
N digits accuracy.

For efficient computing of the rank, we use an approach based
on approximate method and modular adder, which decreases the
demanded accuracy of computations:

RX =

⌊
n∑

i=1

kixi/2N

⌋
, (3)

where ki =

⌈⏐⏐P−1
i

⏐⏐
pi
2N/pi

⌉
.

Now, we derive Theorem 1 that shows how values N , RX , and rX
are related. It provides a theoretical basis of our approach.

Theorem 1. If N = ⌈log2ρ⌉, then rX = RX or rX = RX − 1, where
ρ =

∑n
i=1pi − n.

Proof. Let ki =

⌈⏐⏐P−1
i

⏐⏐
pi
2N/pi

⌉
, then ki can be represented as:

ki =
⏐⏐P−1

i

⏐⏐
pi
2N/pi + θi, where 0 ≤ θi ≤ (pi − 1)/pi.

Let us compute the value of
∑n

i=1kixi:
n∑

i=1

kixi =

n∑
i=1

(⏐⏐P−1
i

⏐⏐
pi
2N

pi
+ θi

)
xi

=

n∑
i=1

⏐⏐P−1
i

⏐⏐
pi
2N

pi
xi +

n∑
i=1

θi · xi

= 2N
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi

pi
xi +

n∑
i=1

θi · xi

(4)

Computing RX by substituting Eq. (4) in Eq. (3), we obtain:

RX =

⌊
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi

pi
xi +

∑n
i=1 θi · xi
2N

⌋
(5)

From Eq. (5) and Eq. (2), it follows that

rX = RX − 1, if
∑n

i=1 θi · xi
2N < 1.

The sufficient condition is:
∑n

i=1θi · xi < 2N . Since
∑n

i=1θi · xi ≤∑n
i=1 (pi − 1) = ρ, then N = ⌈log2ρ⌉ is sufficient to hold the

inequality
∑n

i=1θi · xi < 2N . Theorem is proved. □

Fig. 5. The speed of data decoding (Mb/s) versus RRNS settings (k, n) for {b =

8, 16, 32}.

Complexity of the algorithm to calculate the rank of rX based
on Theorem 1 is O(b · log b). Since coefficients

=

ki are of size b +

⌈log2n⌉ bits, we are able to compute the value of X efficiently.
The proposed algorithm allows to compute values in the same

range −P < X < P as Montgomery modular multiplication algo-
rithm. However,Montgomerymodularmultiplication is inefficient
for the given problem. It requires converting each integer from
binary number system toMontgomery system,which has the same
complexity as computation of X .

Example 1. Let RNSmoduli set be p1 = 2, p2 = 3, p3 = 5. Dynamic
range of RNS is P = 2 · 3 · 5 = 30. We convert X = 8

RNS
→ (0, 2, 3),

Y = 29
RNS
→ (1, 2, 4) from RNS to binary number system using

Theorem 1.
1. RNS constants are computed once and kept in memory.

P1 = P/p1 = 15, P2 = P/p2 = 10, P3 = P/p3 = 6;⏐⏐P−1
1

⏐⏐
p1
P1 = 15,

⏐⏐P−1
2

⏐⏐
p2
P2 = 10,

⏐⏐P−1
3

⏐⏐
p3
P3 = 6;

ρ = −3 + 2 + 3 + 5 = 7, N = ⌈log27⌉ = 3;

k1=
⌈⏐⏐P−1

1

⏐⏐
p1
2N/p1

⌉
=4, k2=

⌈⏐⏐P−1
2

⏐⏐
p2
2N/p2

⌉
=3,

k3=
⌈⏐⏐P−1

3

⏐⏐
p3
2N/p3

⌉
=2;

2. To calculate X and Y , we compute the sums:∑3
i=1kixi = 4 · 0 + 3 · 2 + 2 · 3 = 12.∑3
i=1kiyi = 4 · 1 + 3 · 2 + 2 · 4 = 18.

Using Eq. (3), we obtain:

RX =

⌊∑3
i=1 kixi
2N

⌋
= 1, RY =

⌊∑3
i=1 kixi
2N

⌋
= 2.

Finally, we compute X and Y using Eq. (2), and Theorem 1.

X =

3∑
i=1

Pi
⏐⏐P−1

i

⏐⏐
pi
xi − RXP =

= 15 · 0 + 10 · 2 + 6 · 3 − 30 = 8.

Y ∗
=

3∑
i=1

Pi
⏐⏐P−1

i

⏐⏐
pi
yi − RYP =

= 15 · 1 + 10 · 2 + 6 · 4 − 2 · 30 = −1

When Y ∗ < 0, then Y = Y ∗
+ P = −1 + 30 = 29, otherwise,

Y = Y ∗.
As shown in Example 1, the rank of X is equal to the true value of

the function, but approximate rank of Y is less than the true value
of the rank.

Computation of
∑3

i=1Pi
⏐⏐P−1

i

⏐⏐
pi
xi can be done in parallel with

computation of AR. Since its computational complexity is equal to
the complexity of RX · P , they take approximately the same time to
be performed.
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Therefore, correct implementation of decoding algorithm al-
lows to increase the speedof the algorithm. If the approximate rank
RX ofX in RRNS equals to rX+1 (the true rank plus 1), then the value
of X is less than zero. In that case, we should add the dynamic range
of the system to the negative value of X .

6. Error detection, correction and control of arithmetic opera-
tions

6.1. Method of error detection, localization and correction

Using Theorem 1, we propose a new method for data decoding
based on Approximation of the Rank and Error Correcting Codes
(AR-ECC).

From Eq. (2), it follows that
∑n

i=1kixi can be represented in the
form:

n∑
i=1

kixi = X + rXP (6)

Assume that an error E
RRNS
→ (e1, e2, . . . , en) occurred during

computations, and the user (storage or communication) obtained
the value X + E instead of X . Then by Eq. (6), we have:

n∑
i=1

ki(xi + ei) = X + E + rXP + rEP

Without loss of generality, we assume that RRNS moduli set
are in ascending order i.e. p1 < p2 < · · · < pn. Since in the
proposed RRNS, kmoduli are included in the dynamic range, and r
is redundant (control moduli), where k + r = n, then

X <

k∏
i=1

pi = R.

The value of⌊E/R⌋ is ⌊(X + E)/R⌋ or ⌊(X + E)/R⌋ − 1. If
⌊(E + X)/R⌋ = 0, then E = 0.

Therefore, we can use the value ⌊(E + X)/R⌋ to determine if the
result is correct, i.e. if there is or there is no error.

Due to the fact that an error is of the form: E = βPI , where
PI =

∏
i∈I pi, β is integer in the interval [0, P/PI − 1], and I is set

of RRNS moduli that do not have an error. The value ⌊E/R⌋ can be
used as an error syndrome, where each ⌊E/R⌋ is unambiguously
defined by E and I .

We do some precomputations: sort the values of all possible
errors ⌊E/R⌋ in ascending order and map to E. If we use binary
search in a sorted array of values ⌊E/R⌋, we find E and set I in
logarithmic of array size time.

Let X ′
= X + E and X ′

RRNS
→ (x′

1, x
′

2, . . . , x
′
n). Using Eq. (2), we

compute⌊
X ′

R

⌋
=

⌊∑n
i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i − rX ′P

R

⌋
(7)

Since P/R is integer then according to the property of floor,
integer can be taken out as a common factor, and the Eq. (7) can
be rewritten:⌊

X ′

R

⌋
=

⌊∑n
i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i

R

⌋
−

rX ′P
R

(8)

Let P/R = M . Due to the fact that 0 ≤
⌊
X′/R

⌋
< M , Eq. (8) is

equivalent to⌊
X ′

R

⌋
=

⏐⏐⏐⏐⏐
⌊∑n

i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i

R

⌋
−

rX ′P
R

⏐⏐⏐⏐⏐
M

=

⏐⏐⏐⏐⏐
⌊∑n

i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i

R

⌋⏐⏐⏐⏐⏐
M

(9)

From the definition of Pi, it follows that for all i = k + 1, n,
the value Pi/R is integer. Then, according to the property of floor,
integer can be taken out as a common factor, and the Eq. (9) can be
rewritten:⌊

X ′

R

⌋
=

⏐⏐⏐⏐⏐
⌊∑k

i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i

R

⌋
+

n∑
i=k+1

⏐⏐P−1
i

⏐⏐
pi

· Pi

R
· x′

i

⏐⏐⏐⏐⏐
M

(10)

In Eq. (10), the value of
⌊∑k

i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i/R
⌋
can be com-

puted according to Theorem 1. For all i = k + 1, n, the value⏐⏐P−1
i

⏐⏐
pi

· Pi/R are precomputed constants.

Example 2. Let scheme be (3, 5) andmoduli set be p1 = 2, p2 = 3,
p3 = 5, p4 = 7, p5 = 11. Parameters of RRNS are R = 2 · 3 · 5 and
P = 2 ·3 ·5 ·7 ·11 = 2310. There is a number represented in RRNS
X = 8

RRNS
→ (0, 2, 3, 1, 8).

We consider how to use the proposed approach to detect,
localize and correct an error.

Precomputations: M = P/R = 77, P1 = P/p1 = 1155,
P2 = P/p2 = 770, P3 = P/p3 = 462, P4 = P/p4 = 330,
P5 = P/p5 = 210,

⏐⏐P−1
1

⏐⏐
p1
P1 = 1155,

⏐⏐P−1
2

⏐⏐
p2
P2 = 2 · 770 = 1540,⏐⏐P−1

3

⏐⏐
p3
P3 = 3 · 462 = 1386,

⏐⏐P−1
4

⏐⏐
p4
P4 = 1 · 330 = 330,⏐⏐P−1

5

⏐⏐
p5
P5 = 1 · 210 = 210.

We make a table of possible errors depending on the different
values of ⌊W/R⌋:

• 0: there is no error;
• 38, 39: error is in w1;
• 25, 26, 51, 52: error is in w2;
• 15, 16, 30, 31, 46, 47, 61, 62: error is in w3;
• 11, 22, 33, 44, 55, 66: error is in w4;
• 7, 14, 21, 28, 35, 42, 49, 56, 63: error is in w5.

Let the error vector E equals to E = (0, 0, 0, 1, 0), then we
obtain X ′

= X + E
RRNS
→ (0, 2, 3, 2, 8), we compute

⌊
X ′/R

⌋
using

Eq. (10), and we get:⌊
X ′

R

⌋
=

⏐⏐⏐⏐⌊1155 · 0 + 1540 · 2 + 1386 · 3
30

⌋
+ 11 · 2 + 7 · 8

⏐⏐⏐⏐
77

= 11.

Since
⌊
X ′/R

⌋
= 11, the error is in w4, and E = (0, 0, 0, 1, 0).

Therefore, the value of X is X
RRNS
→ (0, 2, 3, 1, 8).

We apply Theorem 1 to compute⌊∑k
i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i/R
⌋
.

k1 =

⌈
23
⏐⏐P−1

1

⏐⏐
p1

· P1/30
⌉

= 308,

k2 =

⌈
23
⏐⏐P−1

2

⏐⏐
p2

· P2/30
⌉

= 411,

k3 =

⌈
23
⏐⏐P−1

3

⏐⏐
p3

· P3/30
⌉

= 370.⌊∑k
i=1

⏐⏐P−1
i

⏐⏐
pi

· Pi · x′

i/R
⌋

=

⌊∑3
i=1kix

′

i/8
⌋

= ⌊(308 · 0+

411 · 2 + 370 · 3)/8
⌋

= 241.

6.2. Error control of RRNS arithmetic operations

In this section, we introduce AR-RRNS method for error detec-
tion, correction, and controlling computational results.

The basic arithmetic operations in most of the algorithms are
addition, subtraction, multiplication and division. The right shift
is a division operation into a power of two and the left shift is an
operation of multiplying by a power of two. For instance, unary
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algebraic operation of negation ‘‘−a’’ can be represented as binary
algebraic operation using the expression 0 − a.

If we denote ith binary operation Oi, with operands Xi and Yi, it
can be written as: Oi = fi(Xi, Yi).

We denote the sequence of binary algebraic operations
Oi performed consequently over operands X1, X2, . . . , Xm as
F (X1, X2, . . . , Xm).

Since the control of results of the intermediate computations is
a complex problem, and probability of errors in computations is
high, we need a method to check the result of F (X1, X2, . . . , Xm).

To control results of computations, AN codes can be used
(Grangetto et al., 2005) [78]. However, they require redundant
information, and do not adapted to distributed systems. RRNS
allows to control computations with less redundant information.

Let the true result of F (X1, X2, . . . , Xm) be in the form: T
RRNS
→

(t1, t2, . . . , tn). Suppose, obtained result is A
RRNS
→ (a1, a2, . . . , an). If

for all i = 1, n, ti = ai holds, then the obtained result is correct,
otherwise, is wrong. To check if the result of F (X1, X2, . . . , Xm) is
correct, we use the method of scaling and base extension in RRNS.

For instance, from first n − 1 residues (a1, a2, . . . , an−1), we
compute an. If an = an, then the result of F (X1, X2, . . . , Xm) is
correct, otherwise, is wrong.

To find the true result, we use themethod of error detection and
localization considered above. Hence, the results have no errors
that cannot be detected in RRNS.

The error can be corrected not only in the case of overlapping
moduli errors during computations over one modulus, but also in
case of a single failure.

For example, if an error occurred in pi, but, during the computa-
tion of F (X1, X2, . . . , Xm), there is multiplication by zero the error
is corrected.

Theorem 2. Let p1, p2, . . . , pn be RRNS moduli set, X
RRNS
→

(x1, x2, . . . , xn) and Y
RRNS
→ (y1, y2, . . . , yn) be numbers in RRNS with

ranks rX and rY , then the following equality holds:

rX+Y = rX + rY −

∑
xi+yi≥pi

⏐⏐P−1
i

⏐⏐
pi

(11)

Proof. By definition of rank rX+Y is

rX+Y =

⌊
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi
|xi + yi|pi
pi

⌋
(12)

Considering that for all ∀i ∈ 1, n the following equality holds

|xi + yi|pi =

{
xi + yi − pi, ifxi + yi ≥ pi,
xi + yi, other

then Eq. (12) can be rewritten in the form:

rX+Y =

⌊
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi
xi

pi
+

n∑
i=1

⏐⏐P−1
i

⏐⏐
pi
yi

pi
−

∑
xi+yi≥pi

⏐⏐P−1
i

⏐⏐
pi

⌋
(13)

Since integer A can be represented as sum of whole and fractional
part, i.e. A = ⌊A⌋ + {A}, then, according to the property of floor,
integer part is a common factor. Consequently, Eq. (13) can be
rewritten in the following form:

rX+Y =

⌊
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi
xi

pi

⌋
+

⌊
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi
yi

pi

⌋
−

∑
xi+yi≥pi

⏐⏐P−1
i

⏐⏐
pi

+

⌊{
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi
xi

pi

}
+

{
n∑

i=1

⏐⏐P−1
i

⏐⏐
pi
yi

pi

}⌋ (14)

According to Chervyakov et al. (2014) [79],
{∑n

i=1

⏐⏐P−1
i

⏐⏐
pi
xi/pi

}
=

X/P and
{∑n

i=1

⏐⏐P−1
i

⏐⏐
pi
yi/pi

}
= Y/P .

If we substitute the values rX =

⌊∑n
i=1

⏐⏐P−1
i

⏐⏐
pi
xi/pi

⌋
and rY =⌊∑n

i=1

⏐⏐P−1
i

⏐⏐
pi
yi/pi

⌋
in Eq. (14), we obtain:

rX+Y = rX + rY −

∑
xi+yi≥pi

⏐⏐P−1
i

⏐⏐
pi

+

⌊
X
P

+
Y
P

⌋
(15)

Since the condition of RRNS applicability is X + Y < P , then
⌊X/P + Y/P⌋ = 0, and Eq. (15) equals to Eq. (11).

Theorem is proved. □

Example 3. Let RNS moduli set be p1 = 2, p2 = 3, p3 = 5, with
dynamic range of RNS P = 2 · 3 · 5 = 30. Two numbers in RNS are
X

RNS
→ (0, 2, 3) and Y

RNS
→ (1, 2, 4).We consider several cases how to

use Theorem2 to verify the result.We use coefficients for the given
RNS that are computed in Example 1: rX = 1, rY = 1,

⏐⏐P−1
1

⏐⏐
p1

= 1,⏐⏐P−1
2

⏐⏐
p2

= 1,
⏐⏐P−1

3

⏐⏐
p3

= 1,
⏐⏐P−1

1

⏐⏐
p1
P1 = 15,

⏐⏐P−1
2

⏐⏐
p2
P2 = 10,⏐⏐P−1

3

⏐⏐
p3
P3 = 6.

Case 1. W = X + Y
RNS
→ (1, 1, 2). We compute the sum

∑3
i=1kiwi =

4 · 1 + 3 · 1 + 2 · 2 = 11, then RW = ⌊11/8⌋ = 1. W =∑3
i=1Pi

⏐⏐P−1
i

⏐⏐
pi
wi − RWP = 15 · 1 + 10 · 1 + 6 · 2 − 30 = 7.

Therefore, according to Theorem 1, we get: r∗

W = RW = 1. We
check if the result is correct with Theorem 2 and Eq. (11). We get:
rW = rX + rY −

⏐⏐P−1
2

⏐⏐
p2

−
⏐⏐P−1

3

⏐⏐
p3

= 1 + 1 − 1 − 1 = 0.
Since r∗

W ̸= rW , there is an error. In this case, X = 8 and Y = 29,
and W = X + Y = 8 + 29 = 37. Therefore, there is RNS dynamic
range overflow, which lead to the error detection.

Case 2. W = X + X + E
RNS
→ (1, 1, 1), where E is the error vector

equals to E
RNS
→ (1, 0, 0).We compute the sum

∑3
i=1kiwi = 4·1+3·

1+2·1 = 9, thenRW = ⌊9/8⌋ = 1.W =
∑3

i=1Pi
⏐⏐P−1

i

⏐⏐
pi
wi−RWP =

15 · 1 + 10 · 1 + 6 · 1 − 30 = 1.
Therefore, according to Theorem 1, we get r∗

W = RW = 1. We
check if the result is correct with Theorem 2 and Eq. (11). We get:
rW = rX + rY −

⏐⏐P−1
2

⏐⏐
p2

−
⏐⏐P−1

3

⏐⏐
p3

= 1 + 1 − 1 − 1 = 0. Since
r∗

W ̸= rW , there is an error.

Case 3. W = X + X
RNS
→ (0, 1, 1). We compute the sum

∑3
i=1kiwi =

4·0+3·1+2·1 = 7, thenRW = ⌊7/8⌋ = 0.W =
∑3

i=1Pi
⏐⏐P−1

i

⏐⏐
pi
wi−

RWP = 15 ·0+10 ·1+6 ·1 = 16. According to Theorem 1, we get:
r∗

W = RW = 0.We check if the result is correct with Theorem 2 and
Eq. (11).Weget: rW = rX+rY−

⏐⏐P−1
2

⏐⏐
p2

−
⏐⏐P−1

3

⏐⏐
p3

= 1+1−1−1 = 0.
Since r∗

W = rW , the result is correct.
As it is shown in Example 3, Theorem 2 can be used to verify the

result of arithmetic operations even with the minimal redundancy
(n, n). However, in the case of an error, it cannot be corrected. In
Example 2,we consider the approach that not only detects an error,
but also corrects it.

7. Configurable model

Methods for detecting failures in distributed data storage and
communication media are typically based on error correction
codes, erasure codes, regeneration codes and their modifications.
However, if they do not allow to control computations, and do
not have the property of homomorphism of arithmetic operations,
they require extreme computational power for data processing and
analysis.
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In contrast to the existing methods, error correction codes in
RRNS can effectively detect, correct errors, and control computa-
tions. They are fully homomorphic that makes them applicable for
big data storage and processing.

However, the error correction codes in RRNS have one signifi-
cant drawback: the high complexity of detection and localization
of errors.

To solve this problem, we propose the approximate method to
compute ranks of numbers, sort the array of relative values, and
use the binary search.

Our AR-ECC approach reduces complexity from linear to the
logarithmic of the power of the set of all possible numbers pro-
jections in RRNS.

The model is configurable. To determine and configure pa-
rameters, the following optimization criteria should be taken into
account: accuracy, scalability, reliability, confidentiality, security,
and performance.

Accuracy. The accuracy of computations depends on the param-
eterN in the number rank computation. The precisionN ≥ log2(ρ ·

P) allows obtaining the rank of a number accurately (Chervyakov
et al., 2014) [79]. However, according to Theorem 1, the precision
N = ⌈log2(ρ)⌉ allows to effectively approximate the rank of a
number with a deviation of less than 1 from the true result.

Scalability and reliability. If an error occurs, we use the cloud
scalability property to maintain certain level of reliability. We
restore or correct the lost data chunks stored in one or several
clouds using AR-ECC. We determine the parameters of storage
system for desirable reliability using the approach described in
Section 4.1, and the amount of memory necessary to store data
using the redundancy coefficient from Section 4.2.

Confidentiality and security. To make the scheme asymptotically
ideal, Barzu et al. (2013) [80] proposed to use the Asmuth–Bloom
algorithm that provides a high degree of data security. However,
this algorithm is inapplicable for distributed storage, since it re-
quires redundancy of data storage as in the Shamir scheme.

In RRNS, the computational security of the system depends on
the parameters k, n, bi and αi. It can be estimated using the formula
V/VI , where V is the volume of data and VI is the maximal amount
of data that can be leaked to an unauthorized user.

For example, if for all i = 1, n, the condition bi = const holds,
and there is a conspiracy of k − 1 clouds, then the cardinality of
the set of all possible combinations of input data is greater than or
equal to 2b−1.

To estimate and adapt the security level, we use the approach
from Section 4.1. It estimates the risks of cloud conspiracy or DDoS
attacks on cloudproviders according to the chosen level of security.

Performance. An important issue is to minimize the compu-
tational costs associated with the implementation of arithmetic
operations. Since they aremodular, to select RRNSmoduli, we have
to take into account that moduli are pairwise co-prime integers.
Modulo is 2bi ± αi, where bi corresponds to the amount of stored
and processed data in the i-th cloud, αi is an integer in binary
representation with a fixed number of bits equal to ‘‘1’’.

The approach from Section 4.3 estimates the speed of data
encoding and decoding. If there are no errors in the data storage
system, then the speed of decoding increases significantly, because
there is no need to perform the expensive operation of finding the
error.

Section 6.1 describes how to increase the speedof data decoding
due to the optimization of themethod of finding the error using AR.
To compute Eq. (10), we use CRT. It takes, roughly,M2

≈ r2 · b2 bit
operations, where r = n − k. Since the value of Eq. (10) is M , to
detect and localize an error, we need log2 M · r · b bit operations. In
order to encode 1Mb of data, 223

(
log2 M · r · b + r2 · b2

)
/(k ·b) =

Fig. 6. The speed of decoding data (Mb/s) based on AR-ECC and RRNS on the worst
scenario of data recovery with maximum number of errors versus RRNS settings
(k, n) for b = 8.

223
· (log2 (r · b) · r+ r2 ·b)/k bit operations are required. Therefore,

the speed of decoding is

VD =
230

· k
223 ·

(
log2 (r · b) · r + r2 · b

)
=

27
· k

log2 (r · b) · r + r2 · b
.

This method increases the speed of data decoding from

VD =
27

Ck+1
n · b · k

up to VD =
27

· k
log2 (r · b) · r + r2 · b

To detect and correct at least one error, k has to satisfy the
inequality k ≤ n−1. Fig. 6 shows the data decoding rate depending
on parameters that satisfy this condition.

To increase the speed of data encoding and decoding, we can
use multi-core processors or several VMs. If we choose the values
bi to be multiples of the machine word, the effective implementa-
tion of modular arithmetic with distributed operations and neural
network of finite ring can be used. It decreases the complexity of
finding the remainder of the division from quadratic to linear.

This approach is feasible for modern IoT mobile systems. Ac-
cording to (Geekbench Browser site) [77] performance of single
core of Apple A10 Fusion mobile processors is better than perfor-
mance of the Intel Xeon E5–2673 core.‘1.

8. Conclusions

In this paper, we introduce a new configurable data storage
scheme based on the error correction codes and secret sharing
schemes.

We provide a theoretical basis to calculate probability of in-
formation loss, data redundancy, speed of encoding/decoding, and
configure parameters to cope with different objective preferences,
workloads, and cloud properties.

We show how the proposed scheme allows to configure safety,
reliability, and reduce an overhead of data storage by appropriate
selection of RRNS parameters.

Based on the proposed approximation rank, we design new
method of data decoding AR-ECC that reduces complexity from
O(L2) down to O(L · log L), and the size of the coefficients from
⌈log(ρ · P)⌉ to ⌈log(ρ)⌉ bits.

Using properties of the approximate value and arithmetic prop-
erties of RNS, we introduce AR-RRNS method for error detection,
correction, and controlling computational results.

However, further study is required to assess its actual efficiency
and effectiveness in real systems. This will be the subject of future
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work providing a comprehensive experimental study of multi-
objective optimization with real cloud providers.

Acknowledgments

The work is partially supported by CONACYT (Consejo Nacional
de Ciencia y Tecnología,México), grant no. 178415. Part of thework
was supported State task No. 2.6035.2017 and Russian Federation
President Grant SP-1215.2016.5.

Appendix. Terminology

Reliability is promoted through the use of fault-tolerant sys-
tems to be operational in case of components failures. Usually,
solutions are based either on full content replication (every file
is replicated in every server node) or full distribution (every file
is stored in one and only one server node). With full replication,
the system is highly reliable and request distribution is easy to im-
plement, as any server node may serve each request. On the other
hand, storage scalability is minimal, as the full storage capacity is
limited by the server node with the lowest capacity. Furthermore,
adding new server nodes to the system does not increase storage
capacity.

Scalability is a desirable attribute of a network, system, or pro-
cess. The concept connotes the ability of a system to accommodate
an increasing number of elements or objects, to process growing
volumes of work gracefully, and/or to be susceptible to enlarge-
ment. When procuring or designing a system, we often require
that it be scalable. The requirement may even be mentioned in a
contract with a vendor.

Accountability as an essential information security concept
means that every user who works with an information system
should have specific responsibilities for information assurance. The
user tasks are the part of the overall information security plan.
They are readily measurable by a person who has managerial
responsibility for information assurance.

Availability refers to ensuring that authorized parties are able
to access the information when needed. Information has value if
the right people can access it at the right times. Denying access to
information has become a very common attack nowadays. Almost
every week you can find news about high profile websites being
taken down by DDoS attacks. The primary aim of DDoS attacks is
to deny users of the website access to the resources. Such down-
time can be very costly. Other factors that could lead to lack of
availability to important information may include accidents such
as power outages or natural disasters such as floods. Backup is a key
to ensure data availability. Regularly off-site backups can limit the
harm caused by damage hard drives or natural disasters. Having an
off-site location ready to restore services in case anything happens
to the primary data center will heavily reduce the downtime. For
information services that are highly critical, redundancy might be
appropriate.

Confidentiality is protecting the information fromdisclosure to
unauthorized parties. Information has value, especially in today’s
world. Bank account statements, personal information, credit card
numbers, trade secrets, government documents, etc. Protecting
such an information is a very important part of information secu-
rity

Integrity is protecting information from being modified by
unauthorized parties. An information has a value only if it is cor-
rect.

Privacy is an approach used for preserving personal data.
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