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12.1
INTRODUCTION From time to time a manager’s model may be so complex that the mathematical model

constructed to attack it cannot be solved with the traditional algorithms available to the
analyst. This situation may occur because

1. The model, “correctly formulated,” may be too large, too nonlinear, or logically too
complex (requiring, for example, the use of many 0–1 variables in the formulation).

2. It is felt that the imposition of simplifying assumptions or approximations, which might
make the model more tractable, would destroy too much of the important real-world
structure of the model (i.e., would carry the model too far from reality to be useful).

Here is a real dilemma. The model at hand is too complex to solve. At the same time we
are unwilling to simplify it in any ameliorative way. What does one do in this seemingly
hopeless situation?

In part to answer this question, the field of heuristic programming has developed. In
the discussion above, when we employed the phrase “the model is too complex to solve,” we
were using the word solve in a rigorous mathematical sense. We meant that the mathemati-
cal model was so complicated that, although a rigorous solution exists (e.g., an optimal
solution in an optimization model), it is too difficult, too time-consuming, perhaps even
impossible to discover with existing know-how and technology. In such a case a heuristic
algorithm might be employed.

A heuristic algorithm is one that efficiently provides good approximate solutions to a
given model. Often (but by no means always) in employing such an algorithm one may be
able to measure precisely the “goodness” of the approximation. For example, in the opti-
mization context, with some heuristic algorithms one can make a statement like “Upon ter-
mination you can be sure of being within _% of optimality.” Or, “Under certain assump-
tions the heuristic answer will be optimal ___% of the time.” An important aspect of a
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Over the last two decades, several factors have altered the
practice of forest land management around the world. As the
population and resource development increase, many forest-
based outputs are approaching or exceeding sustainable levels
of use. People are increasingly aware of the need to preserve
forest ecosystems, to sustain a wide spectrum of resources, and
to protect threatened and endangered species, wildlife habitat,
scenic beauty, and biodiversity. As a result, forest land man-
agers are shifting their emphasis from the production of goods
and services (the agricultural model) toward maintaining for-
est health, biodiversity, and productivity (the ecosystem
model). With increased public participation in the manage-
ment of all foreast resources, it is not surprising that the deci-
sion-making process has become more open, political, and
complex.

Publicly owned forests have multiple uses and are subject
to many concerns. Some forest outputs have direct economic
value: timber, forage, recreation, and water. Others have less
measurable value: scenic beauty, undisturbed wilderness land-
scapes, biodiversity, and preservation of endangered species.

Also important are the social and economic issues of forest-
dependent communities, intergenerational equity, efficiency,
and fairness. The last decade has seen the growing involve-
ment of ecologically minded groups, supported by a public
increasingly concerned with environmental issues. Explicit
recognition of multiple objectives in forest-planning models
is becoming increasingly important.

The two multiple-objective models most widely used in
forest management are based on goal programming and mul-
tiple-objective linear programming. Generally, these models
optimize a given set of forest-management decisions in light
of multiple objectives.

Many multiple-objective forest-management problems
are resolved in an adversarial environment in which regula-
tory constraints are proposed in an effort to achieve satisfac-
tory levels of hard-to-value common property resources, such
as water, fish, and wildlife. Compromise solutions are being
developed around the bargaining table with multiple-objec-
tive computer models helping to frame these discussions. (See
Weintraub and Bare.)

APPLICATION CAPSULE Reconciling Many Competing Objectives—Forest Land
Management Issues



heuristic algorithm is that it never gives a “bad” solution. It is more important always to
have a fairly good solution than to have the best solution sometimes and a bad solution
once in a while.

The term heuristic is also frequently encountered. A heuristic is an intuitively appeal-
ing rule of thumb for dealing with some aspect of a model. A collection of heuristics, or
heuristic algorithms, is referred to as a heuristic program. Some computer codes to solve
linear programs (like Excel’s Solver), for example, employ heuristics in the initial phase of
the simplex method to attempt to quickly find an initial corner. Heuristics are employed to
get a quick start with the transportation algorithm, and so on.

As you can infer from the definitions above, you no doubt use heuristics frequently in
everyday problem solving. You go to the bank, and to minimize your time waiting, you
stand in the shortest line. Although this is by no means guaranteed to be optimal, it is a rule
of thumb that often works quite well. In checking through customs you may prefer the
bench occupied by a smiling officer, although he is certainly not guaranteed to be more
lenient than others. The list goes on.

In the context of mathematical programming, heuristics are often employed in con-
junction with, or as a special case of, more general or more rigorous problem-solving
strategies. The important point to remember is that a heuristic procedure or algorithm is
intuitively appealing but can only guarantee its results, if at all, in a statistical manner or
within certain margins of uncertainty. It is employed mainly for efficiency—namely, to
produce quickly what are hopefully good, if not optimal, results.

In the first part of this chapter we discuss several examples of heuristic algorithms as
applied to large combinatorial optimization models. The term combinatorial optimization
means there are only a finite number of feasible alternatives, and if all of these are enumer-
ated, the optimal one can be found. The problem is that in practice this finite number often
amounts to millions or even billions of possibilities, and hence even on high-speed com-
puters complete enumeration is out of the question. Although such models can often be
formulated as integer programs with 0–1 variables, they are often so large that even the IP
formulation is prohibitively expensive to bring to optimality with the usual branch-and-
bound or partial enumeration approach.

Following the examples in the first part of the chapter, we then look at models for
which the objective is to achieve acceptable levels of certain “goals.” For example, consider a
model with multiple but conflicting objectives. The president of a firm wants high profits
but also wants to maintain low prices in order to keep from losing clients. An executive
with a fixed budget wants to invest in R&D to provide long-term benefits to the firm, but
also wants to purchase raw materials to make a product that generates shorter-term profits.
Such examples of multiple but conflicting objectives are typical in business applications.
Goal programming deals with such models. The topic is closely related to heuristic pro-
gramming, for in a sense goal programming itself could be thought of as a heuristic
approach to dealing with multiple objectives.

Next, we will look at a hot new area called analytic hierarchy process (AHP), which is a
tool to help managers choose between many different decision alternatives when there are
multiple criteria that are used to score the alternatives. Numerous examples can be thought

Generally speaking, from the viewpoint of a manager, a heuristic procedure may cer-
tainly be as acceptable as, and possibly (in terms of cost) even preferable to, a “more
exact” algorithm that produces an optimal solution. The dominant considerations
should be the amount of insight and guidance that the model can provide and the over-
all net benefit as measured by the difference “savings due to the model less cost of pro-
ducing the model and its solution.”
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of that fit this general modeling area; for example, choosing a new computer or software
package, selecting a university to attend, or which job offer to accept. AHP brings good dis-
cipline to this decision methodology.

SEQUENCE-DEPENDENT SETUP TIME
Consider a single production facility through which numerous jobs must be processed—
for example, a computer, a drill press, or an ice cream machine. Typically, the facility may
have to shut down after processing one job in order to set up for the next. Such “downtime”
is termed setup, or changeover, time. The length of the setup time may depend on the next
job to be processed and the job just completed. A sequence of similar jobs (making French
vanilla ice cream after New York vanilla) would be interrupted by less setup time (cleaning
out the machine) than a sequence of dissimilar jobs (French vanilla after Dutch chocolate).
A typical managerial problem would be to sequence the jobs in such a way as to minimize
total setup time. This is a typical problem for a company such as Monsanto Chemical,
which makes chemicals in common vats or transports them by tank cars. It makes a differ-
ence in which order the chemicals are produced or transported, as to the cost of
changeover.

You can easily see that from the combinatorial point of view this can be a very large
model. If there are only three jobs to be processed, say jobs A, B, and C, then any of the
three could be taken first, with either of the remaining two second and the third deter-
mined (i.e., the single remaining job). The possible sequences can be displayed as a tree
with each branch representing one sequence. The six possibilities are shown in Figure 12.1.
In general, with n jobs, there are n! = n(n – 1)(n – 2) . . . 1 possible combinations or
sequences (n! is the mathematical term n factorial). Only 10 jobs produces 10! = 3,628,800
different sequences. You can see that this number of possible sequences (n!) increases
rapidly with the size of n.

Obviously, one way to think about solving the minimization problem above is by com-
plete enumeration. That is, generate each of the n! possible sequences of jobs and compute
the total setup time required for each sequence. Then pick the sequence associated with the
smallest total time. Although this algorithm would provide a true optimum, it is not prac-
tical even for modest values of n because of the large number of sequences that would have
to be enumerated. If there were 20 jobs, and a computer (like IBM’s Deep Blue) could cal-
culate 6,500,000,000 combinations each second (6500 MIPS in computer language), it
would take over 11 years to determine the optimal answer by listing every possible combi-
nation.

HEURISTIC SOLUTIONS
Heuristic rules, although they will not guarantee an optimal solution, are often applied to
this model, for they will usually lead quite quickly to a satisfactory solution.

As an example, consider a machine operator who has three rather long batch jobs to be
run on Monday afternoon. The machine is currently idle. For each of these jobs there is a
setup time (cleaning the machine from the last job, setting up the individual components
and other auxiliary equipment for the new job, etc.) as specified in Figure 12.2. Since 
there are only 3! = 3 ⋅ 2 = 6 possible sequences, they can all be enumerated. The results
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FIGURE 12.1

Tree Showing Six Possible
Sequences for Three Jobs 
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appear in Table 12.1. As you can see, the optimal (minimum total setup time) sequence is 
0 → A → C → B.

A Greedy Heuristic Let us now see how a heuristic rule might be applied to this
model. The rule we shall illustrate is called the next best rule, sometimes called a greedy
algorithm. The rule goes as follows:

1. At step 1 (e.g., in selecting the first job), perform the task with least initial setup time.
2. At each subsequent step, select the task with least setup time, based on the current

state.

Let us now apply this rule to the data in Figure 12.2. The task with the least initial
setup time is B. Hence, the first step is 0 → B. According to the greedy algorithm, given
that we have just completed B, the task to be selected is C, since the setup for B → C is less
than for B → A. Thus, we have 0 → B → C, and we can then finish only with A. Thus, we
obtain

greedy heuristic: 0 → B → C → A

total setup time = 21 + 46 + 46 = 113

Notice that this is far from optimal. In fact, in this example, the greedy heuristic, although
intuitively appealing, provides the worst possible policy for our model. Although it is true
that in general, for sequential decision models, the greedy algorithm does not lead to an
optimal solution, there are in fact a few special models for which it does. (See, for example,
the problem of finding a minimal spanning tree in Chapter 5.) However, the rule is
extremely easy to apply, and studies on this type of model have shown that statistically, for
the above type of sequencing model, the rule is not bad. For example, one article [see
Gavett] showed that the heuristic will often produce better results than could be obtained
by a purely random selection of tasks.

A Better Heuristic The same article shows that the following modified heuristic gives
even better results:

1. Transform the original data in Figure 12.2 by subtracting the minimum setup time in
each column from all other entries in that column. This process produces the data in
Figure 12.3.

2. Apply the greedy algorithm to this set of transformed data. Doing this, we obtain

Best first step 0 → A

Best second step A → C

Third step C → B

and thus the modified heuristic produces the sequence 0 → A → C → B, which was
already shown to be optimal for this model.

Although this modified heuristic will not always give the optimal solution, it is easy to
implement, and in practice, for large models, it often produces quite good results.
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FIGURE 12.2

Setup Times in Minutes

A

To
job

From
job

B C

270 21 32

A 35 22

49B 46

46C 12

Table 12.1

Results of Complete
Enumeration

SEQUENCE SETUP TIME TOTAL (MIN)

0 → A → B → C 27 + 35 + 46 108

0 → A → C → B 27 + 22 + 12 61

0 → B → C → A 21 + 46 + 46 113

0 → B → A → C 21 + 49 + 22 92

0 → C → A → B 32 + 46 + 35 113

0 → C → B → A 32 + 12 + 49 93

FIGURE 12.3

Transformed Data

A B C

00 9 10

A 23 0

22B 24

19C 0
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12.3
SCHEDULING WITH LIMITED
RESOURCES (WORKLOAD
SMOOTHING)

FIGURE 12.4
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Table 12.2

Requirements for Each
Activity

TIME REQUIRED TO NO. OF PEOPLE (PER WEEK)
ACTIVITY COMPLETE (WEEKS) REQUIRED TO COMPLETE

I 3 6

II 2 3

III 1 3

IV 1 3

V 2 6

VI 4 5

VII 1 3

VIII 2 4

IX 2 3

* If you have studied PERT, you can see that activities I, V, and VI form the critical path (see Section 14.3).

Imagine a sequence of activities to be scheduled in order to complete a project. Basic mod-
els such as PERT and CPM, discussed in Chapter 14, will schedule the activities in such a
way as to minimize total project completion time subject to the constraint that some activ-
ities cannot start until others have been completed. The resources (money, labor, machin-
ery, and so on) needed to complete the individual activities are often considered to be avail-
able in any quantities required by any particular schedule. In reality, however, such
resources may be limited, in which case resource availability becomes another constraint.

A SIMPLE EXAMPLE
As a simple example, consider the scheduling model shown in Figure 12.4 and Table 12.2.
Figure 12.4 shows precedence relationships among the various activities. That is, it shows
which activities must be completed before others can begin. For example, activity VIII can-
not begin until VII is completed, and VII cannot begin until I is completed. Table 12.2
shows the duration of each activity (in weeks) and the resources required (number of peo-
ple) to complete each activity.

Ignoring the “Number of People Required” for now, this problem is simple, and thus the
earliest possible completion time can be easily computed. It is 9 weeks.* Figure 12.5 shows a
proposed activity schedule that will achieve this overall completion time. Thus, Figure 12.5
respects the precedence relationships of Figure 12.4, and at the same time shows when each
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FIGURE 12.5

Proposed Schedule of
Activities
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FIGURE 12.6

Personnel Loading Chart for
the Proposed Schedule
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activity should start and how long (in weeks) it will take. In this proposed schedule, each
activity starts as early as possible. You can see that I, II, and III start immediately (at the begin-
ning of week 1). Activities IV, V, VII, and IX start at the beginning of week 4. Activity VI starts
at the beginning of week 6, and activity VIII starts at the beginning of week 5.

Now consider the number of people per week required to implement the proposed
schedule. The personnel data in Table 12.2 can be combined with the schedule in Figure
12.5 to produce the personnel loading chart shown in Figure 12.6. As you can see, the pro-
posed schedule makes an erratic utilization of personnel, the requirements fluctuating
between the extremes of 15 people in week 4 and only 5 in weeks 7, 8, and 9. It may be to
management’s advantage to have a schedule that employs resources more smoothly.
Heuristic programs are often applied to accomplish such an objective.

WORKLOAD SMOOTHING HEURISTIC
In order to discuss one such heuristic, let us define, for each activity, its slack.

Note in Figure 12.5 that if the completion time of activity V were delayed, then activity VI
could not start at the beginning of week 6 and the project could not be completed by the
end of the ninth week. Thus activity V has no slack. In contrast, the completion of activity
VIII could be delayed by 3 weeks without delaying the completion of the project. Activity
VIII thus has a slack of 3 weeks.

Slack is the maximum amount of time an activity can be delayed without delaying over-
all project completion.
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FIGURE 12.7
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FIGURE 12.8
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Now, using this concept, the following heuristic is given to help “reduce the peaks” and
“raise the valleys” in order to provide a smoother workload across time:

1. Determine the maximum required resources in the proposed schedule, say m work-
ers/week.

2. In each week, impose a new upper limit of m – 1 for resource utilization (remember
we’re trying to reduce the peaks one step at a time), and, if possible, revise the proposed
schedule to satisfy this constraint. The revision is systematically performed as follows:
a. Beginning with the earliest week violating the constraint, consider the activities

contributing to the overload and move forward the one with most slack as little as
possible until it contributes to no overloading, but without delaying the comple-
tion of the entire project (which means that activities with zero slack may not be
moved). If there are ties, move forward the activity that contributes least to the
overload (i.e., requires the fewest people).

b. The heuristic terminates when the current overload cannot be decreased.

To apply this heuristic, let us portray the proposed plan as in Figure 12.7. In this figure,
the activity label (e.g., I, II, etc.) appears below each arrow. Above each arrow is the number of
people required each week. For example, the 6 above activity I implies that 6 people are
required for each of the 3 weeks needed to complete activity I. Thus, you can read down the
appropriate columns to obtain total personnel utilization in a given week. For example, since
week 2 is intersected by activities I and II, the entry in the Total Personnel row, under the week
2 column, is 9. Similarly, the distance from the head of each unfollowed arrow at the end of a
series of jobs to the end of week 9 indicates the slack for such an arrow. Thus, activity IV has
5 weeks of slack, while activity VIII has 3 weeks of slack, and so on. For activity VII, which is a
followed arrow, we compute the slack by noting that VII is followed only by VIII. Since the
slack on VIII is 3 weeks, slack on activity VII must also be 3 weeks. Also notice that activities
I, V, and VI have zero slack since they cannot be moved forward at all without increasing the
overall completion time of 9 weeks. In applying the foregoing heuristic we move forward only
activities with positive slack, and hence activities I, V, and VI are not considered.

Applying the Heuristic Given these observations, we may now employ the heuristic.
For the first proposal (see Figure 12.7), the maximum required resource is 15 in period 4.



Thus, according to step 2, we impose a new upper limit of 14 in each week. This limit is vio-
lated only in week 4. The “movable” activities contributing to the overload are IV, VII, and IX
(since V need not be considered). Of these, the one with most slack is IV. Moving IV forward
1 period reduces the utilization in week 4 by 3 units to 12 people, but creates a utilization of 3
additional units in week 5, giving a total of 16 in week 5, which overloads week 5 (i.e., violates
the imposed upper limit of 14). Hence, it must be moved farther forward. You can see that by
moving activity IV forward a total of 2 weeks (into week 6 as illustrated in Figure 12.7) no
upper limit will be violated. This gives the second proposal, as shown in Figure 12.8.

In this figure the upper limit of 13 must be reduced to 12. The only overload is caused by
VIII and IX in week 5. Activity IX has the most slack, and it must be advanced 3 weeks to
begin in week 7, as shown. This gives the third proposal presented in Figure 12.9. Here the
upper limit of 12 must be reduced to 11. There are violations in weeks 1 and 6. According to
the algorithm, we first move III forward 2 weeks and then IV forward 1 week. Continuing
with the heuristic, we obtain the fourth and fifth proposals shown in Figures 12.10 and 12.11.
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FIGURE 12.9
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FIGURE 12.10
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12.4
MULTIPLE OBJECTIVES

Heuristic Terminates The algorithm is unable to improve beyond the fifth proposal.
To see this, note that the overload on week 5 can be reduced only by moving forward activ-
ity VIII. However, advancing VIII by 1, 2, or 3 weeks would increase the total personnel in
weeks 7 and 8, or 8 and 9, to 12. Step 2b of the heuristic is thus satisfied, and hence this
schedule is the heuristic solution. This final schedule has smoothed the utilization consid-
erably from that shown in Figure 12.6, for the maximum utilization is now 10 (in week 5),
and the minimum is 8.

For this model one might define an optimal solution to be a schedule that minimizes
the maximum utilization of personnel. An optimal schedule, according to this minimax cri-
terion, is shown in Figure 12.12. For this schedule the maximum utilization is 9. Although
the heuristic algorithm did not lead to optimality (in this minimax sense—and it must be
admitted that the schedule in Figure 12.12 is smoother than that in Figure 12.11), our
heuristic approach did quite well. In large models (i.e., with many activities) it would not
be possible to easily generate the optimal minimax schedule. It is for this reason that a
heuristic is often employed to smooth requirements.

This section and the preceding one have given only a very brief introduction to the
important topic of heuristic algorithms. Another example, assigning facilities to different
locations within the building (sometimes called the “layout” model), is discussed in
Problems 12-2, 12-3, and 12-4 at the end of this chapter.

In many applications, the planner has more than one objective. These different objec-
tives may all be of equal importance or, at the very least, it may be difficult for the plan-
ner to compare the importance of one objective with that of another. The presence of
multiple objectives is frequently referred to as the problem of “combining apples and
oranges.” Consider for example the corporate planner whose long-range goals are to 
(1) maximize discounted profits, (2) maximize market share at the end of the planning
period, and (3) maximize existing physical capital at the end of the planning period.
These goals are not commensurate, which means that they cannot be directly combined
or compared. It is also clear that the goals are conflicting. That is, there are trade-offs in
the sense that sacrificing the requirements on any one goal will tend to produce greater
returns on the others. For example, spending fewer dollars on marketing is apt to reduce
market share and thus prevent the firm from meeting its second goal. However, these
dollars can be spent on new machinery in an effort to increase physical capital and sat-
isfy the third goal.
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FIGURE 12.12
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The treatment of multiple objectives is a young but important area in application. At
this time the analytic methods for handling models with multiple objectives have not been
applied as often in practice as some of the other models, such as linear programming, fore-
casting, inventory control, and Monte Carlo simulation. However, the concepts involved
are important, and some leaders in the management science community feel that they will
become more important in the near future. The models have been found to be especially
useful on problems in the public sector.

Several approaches to multiple objective models (also called multi-criteria decision
making) have been developed. They are: use of multi-attribute utility theory, search for
Pareto optimal solutions via multi-criteria linear programming, analytic hierarchy process
(AHP), and goal programming. Our discussion is limited to the last two: AHP and goal
programming. AHP was developed by Thomas Saaty [see Saaty] and is a relatively new
approach to help managers choose between many decision alternatives on the basis of mul-
tiple criteria. Goal programming (GP) was a concept introduced by A. Charnes and W. W.
Cooper [see Charnes and Cooper] which in some ways can be thought of as a heuristic
approach to the multiple-objectives model. GP is a powerful approach that builds on the
development of linear programming presented in Chapters 3 and 4. Both areas are now
experiencing considerable interest and development and are potentially important topics
for future managers.
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In the academic environment, the thrust for excellence in
teaching, research, and extension service presents peculiar
challenges for the facilities planner who must try to allocate
limited resources to achieve the optimal trade-off among the
often-conflicting university objectives. The department of
engineering management at the University of Missouri-Rolla
benefited from a major expansion of its physical facilities in
1987. This included 5,072 square feet of floor space to be
developed into a computer integrated manufacturing (CIM)
laboratory for teaching, research, and extension. The facility
was intended to stimulate interest in teaching and research in
advance manufacturing systems and was expected to evolve
into a center for technical excellence for industry in the state.

The university saw the new CIM lab facility as a campus-
wide resource to be used by all departments in the school of
engineering and by various research centers within the univer-
sity. This resulted in contentious debate and discussion con-
cerning the best facility layout for the new lab. A task force was
appointed to resolve the conflict. After identifying alternative
layout proposals, 15 sections were identified to be located in
the CIM lab (e.g., physical simulation area, Autocad, robot
system, etc.). The ideal area for each section was estimated.
The sum of the ideal requirements was 6,035 square feet,
nearly a 1000 more than was available.

The team had to find some systematic way to allocate
actual space available to the desired sections in a manner con-
sistent with the overall mission of the university. Five goals
were established (e.g., develop new courses relying on the lab,

heighten industry awareness of CIM concepts, etc.) and ana-
lytic hierarchy process (AHP) was used to determine how to
prioritize the goals. A questionnaire was administered to the
team to elicit relative priorities. The preliminary analysis of
the responses revealed several inconsistencies in the subjective
pairwise comparison of attributes. The respondents had an
opportunity to review and adjust their responses, which
resulted in greater consistency in the subjective comparisons.

Once the priorities were established, a linear goal pro-
gramming model was used to determine the allocation of
space to each of the 15 areas. Nine of the 15 obtained space
allocation factors less than 1.0, which suggested a reduction in
the ideal areas originally allocated. Four areas were reduced
significantly. The committee used the space allocation as a
guide to developing the initial layout of the lab. Sensitivity
analysis was also used to determine the effect of altering the
priorities and the model was found to be fairly robust in
response to priority rankings.

AHP was found to be an effective methodology to obtain
group consensus in a highly political environment in a timely
manner for a fairly complex institutional planning problem.
Because this systematic planning methodology was adopted,
the school of engineering readily accepted the department’s
proposals for the layout of the CIM lab and acknowledged
that future lab development should be entrusted to the engi-
neering management department. The CIM lab has hand-
somely fulfilled its teaching, research, and extension objec-
tives. (See Benjamin et. al.)

APPLICATION CAPSULE Facilities Planning at the University of Missouri



GOAL PROGRAMMING
Goal programming is generally applied to linear models; it is an extension of LP that
enables the planner to come as close as possible to satisfying various goals and constraints.
It allows the decision-maker, at least in a heuristic sense, to incorporate his or her prefer-
ence system in dealing with multiple conflicting goals. It is sometimes considered to be an
attempt to put into a mathematical programming context the concept of satisficing. This
term was coined by Herbert Simon, a Nobel Prize winner in economics, to communicate
the idea that individuals often do not seek optimal solutions, but rather, they seek solutions
that are “good enough” or “close enough,” or in other words, the desire to maximize several
objectives simultaneously to at least satisfactory levels. We shall illustrate the method of
goal programming with several examples.

Suppose that we have an educational program design model with decision variables x1
and x2, where x1 is the hours of classroom work and x2 is the hours of laboratory work.
Assume that we have the following constraint on total program hours:

x1 + x2 ≤ 100 (total program hours)

Two Kinds of Constraints In the goal programming approach there are two kinds of
constraints: (1) system constraints (so-called hard constraints) that cannot be violated and
(2) goal constraints (so-called soft constraints) that may be violated if necessary. The above
constraint on total program hours is an example of a system constraint.

Now, in the program we are designing, suppose that each hour of classroom work
involves 12 minutes of small-group experience and 19 minutes of individual problem
solving, whereas each hour of laboratory work involves 29 minutes of small-group experi-
ence and 11 minutes of individual problem solving. Note that the total program time is at
most 6,000 minutes (100 hr * 60 min/hr). The designers have the following two goals:
Each student should spend as close as possible to one fourth of the maximum program
time working in small groups and one third of the time on problem solving. These condi-
tions are

12x1 + 29x2 ≅ 1500 (small-group experience)

19x1 + 11x2 ≅ 2000 (individual problem solving)

where the symbol ≅ means that the left-hand side is desired to be “as close as possible” to
the RHS. If it were possible to find a policy that exactly satisfies the small-group and
problem-solving goals (i.e., exactly achieves both right-hand sides), without violating the
system constraint on total program hours, then this policy would solve the model. A simple
geometric analysis will show that no such policy exists. Clearly then, in order to satisfy the
system constraint, at least one of the two goals will be violated.

To implement the goal programming approach, the small-group experience condition
is rewritten as the goal constraint

12x1 + 29x2 + u1 – v1 = 1500 (u1 ≥ 0, v1 ≥ 0)

where u1 = the amount by which total small-group experience falls short of 1500

v1 = the amount by which total small-group experience exceeds 1500

Deviation Variables The variables u1 and v1 are called deviation variables, since
they measure the amount by which the value produced by the solution deviates from the
goal. We note that by definition we want either u1 or v1 (or both) to be zero because it is
impossible to simultaneously exceed and fall short of 1500. In order to make 12x1 + 29x2 as
close as possible to 1500, it suffices to make the sum u1 + v1 small.

In a similar way, the individual problem-solving condition is written as the goal
constraint

19x1 + 11x2 + u2 – v2 = 2000 (u2 ≥ 0, v2 ≥ 0)
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and in this case we want the sum of the two deviation variables u2 + v2 to be small. Our
complete (illustrative) model is now written as follows:

This is an ordinary LP model and can now be easily solved in Excel. The optimal deci-
sion variables will satisfy the system constraint (total program hours). Also, it turns out
that the Solver (for technical reasons that we shall not dwell on) will guarantee that either
u1 or v1 (or both) will be zero, and thus these variables automatically satisfy this desired
condition. The same statement holds for u2 and v2 and in general for any pair of deviation
variables.

Note that the objective function is the sum of the deviation variables. This choice of
an objective function indicates that we have no preference among the various deviations
from the stated goals. For example, any of the following three decisions is acceptable:
(1) a decision that overachieves the group experience goal by 5 minutes and hits the
problem-solving goal exactly, (2) a decision that hits the group experience goal exactly
and underachieves the problem-solving goal by 5 minutes, and (3) a decision that under-
achieves each goal by 2.5 minutes. In other words, we have no preference among the three
solutions:

(1) u1 = 0 (2) u1 = 0 (3) u1 = 2.5

v1 = 5 v1 = 0 v1 = 0

u2 = 0 u2 = 5 u2 = 2.5

v2 = 0 v2 = 0 v2 = 0

We must have no preference because each of these three decisions yields the same
value (i.e., 5) for the objective function.

Weighting the Deviation Variables Such a lack of preference for one solution
over another certainly would not hold for all goal programming models. Differences in
units alone could produce a preference among the deviation variables. Suppose, for exam-
ple, that the individual problem-solving constraint had been written in hours; that is,

It is hard to believe that the program designers would not prefer a 1-minute excess of small-
group experience (v1 = 1) to a 1-hour shortfall of individual problem solving (u2 = 1).

One way of expressing a preference among the various goals is to assign different coef-
ficients to the deviation variables in the objective function. In the program-planning exam-
ple one might select

Min 10u1 + 2v1 + 20u2 + v2

as the objective function. Since v2 (overachievement of problem solving) has the smallest
coefficient, the program designers would rather have v2 positive than any of the other devi-
ation variables (positive v2 is penalized the least). Indeed, with this objective function it is
better to be 9 minutes over the problem-solving goal than to underachieve by 1 minute the

19
60

 x1 + 11
60

 x2 + u2 – y2 = 
2000

60

Min u1 + v1 + u2 + v2

s.t. x1 + x2 ≤ 100 (total program hours)

12x1 + 29x2 + u1 – v1 = 1500 (small-group experience)

19x1 + 11x2 + u2 – v2 = 2000 (problem solving)

x1, x2, u1, v1, u2, v2 ≥ 0

Note: Both u1 and v1 can’t be > 0.
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small-group-experience goal. To see this, note that for any solution in which u1 ≥ 1,
decreasing u1 by 1 and increasing v2 by 9 would yield a smaller value for the objective
function.

Goal Interval Constraints Another type of goal constraint is called a goal interval
constraint. Such a constraint restricts the goal to a range or interval rather than a specific
numerical value. Suppose, for example, that in the above illustration the designers were
indifferent among programs for which

1800 ≤ [minutes of individual problem solving] ≤ 2100

i.e., 1800 ≤ 19x1 + 11x2 ≤ 2100

In this situation the interval goal is captured with two goal constraints:

19x1 + 11x2 – v1 ≤ 2100 (v1 ≥ 0)

19x1 + 11x2 + u1 ≥ 1800 (u1 ≥ 0)

When the terms u1 and v1 are included in the objective function, the LP code will attempt
to minimize them. We note that when, at optimality, = 0 and = 0 (their minimum
possible values), the total minutes of problem solving (19x1 + 11x2) fall within the desired
range (i.e., 1800 ≤ 19x1 + 11x2 ≤ 2100). Otherwise it will turn out that, at optimality, one of
the two variables will be positive and the other zero, which means that only one side of the
two-sided inequality can be satisfied.

Summary of the Use of Goal Constraints It may be useful at this point to
summarize the various ways in which goal constraints can be formulated and employed.
Each goal constraint consists of a left-hand side, say gi(x1, . . . , xn), and a right-hand side,
bi. Goal constraints are written by using nonnegative deviation variables ui, vi. At optimal-
ity at least one of the pair ui, vi will always be zero. The variable ui represents underachieve-
ment; vi represents overachievement. Whenever ui is used it is added to gi(x1, . . . , xn).
Whenever vi is used, it is subtracted from gi(x1, . . . , xn). Only deviation variables (or a sub-
set of deviation variables) appear in the objective function, and the objective is always to
minimize. The decision variables xi, i = 1, . . . , n do not appear in the objective. We have
discussed four types of goals:

1. Target. Make gi(x1, . . . , xn) as close as possible to bi. To do this we write the goal con-
straint as

gi(x1, . . . , xn) + ui – vi = bi (ui ≥ 0, vi ≥ 0)

and in the objective we minimize ui + vi. At optimality, at least one of the variables ui,
vi will be zero.

2. Minimize Underachievement. To do this, we can write

gi(x1, . . . , xn) + ui – vi = bi (ui ≥ 0, vi ≥ 0)

and in the objective we minimize ui, the underachievement. Since vi does not appear
in the objective function, and it is only in this constraint, hence the constraint can be
equivalently written as

gi(x1, . . . , xn) + ui ≥ bi (ui ≥ 0)

If the optimal ui is positive, this constraint will be active, for otherwise could be
made smaller. This result is also clear from the equality form of the constraint. That
is, if > 0 then, since must equal zero, it must be true that gi(x1, . . . , xn) + 

= bi .

3. Minimize Overachievement. To do this, we can write

gi(x1, . . . , xn) + ui – vi = bi (ui ≥ 0, vi ≥ 0)

u*i
v*1u*i

u*i

v*1u*1
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and in the objective we minimize vi, the overachievement. Since in this case ui does
not appear in the objective function, the constraint can be equivalently written as

gi(x1, . . . , xn) – vi ≤ bi (vi ≥ 0)

If the optimal vi is positive, this constraint will be active. The argument is analogous
to that in item 2 above.

4. Goal Interval Constraint. In this instance, the goal is to come as close as possible to
satisfying

ai ≤ gi(x1, . . . , xn) ≤ bi

In order to write this as a goal, we first “stretch out” the interval by writing

ai – ui ≤ gi(x1, . . . , xn) ≤ bi + vi (ui ≥ 0, vi ≥ 0)

which is equivalent to the two constraints

gi(xi , . . . , xn) + ui ≥ ai gi(xi , . . . , xn) + ui – v̂i = ai (ui ≥ 0, v̂i ≥ 0)

gi(xi , . . . , xn) – vi ≤ bi gi(xi , . . . , xn) + ûi – vi = bi (ûi ≥ 0, vi ≥ 0)

In the case of a goal interval constraint we minimize ui + vi in the objective function. The
variables v̂i and ûi are merely surplus and slack, respectively (not deviation variables). As
usual, at optimality, at least one of the deviation variables ui, vi will be zero. In dealing with
two constraints representing a goal interval, the constraint with the nonzero deviation vari-
able (if there is one) will be active.

In general, goal constraints are most often expressed in the appropriate equality form
using deviation variables, surplus, and slack as required. The equivalent inequality forms
that we have displayed will allow us, for models in two decision variables, to obtain some
geometric insight into the solution procedure.

ABSOLUTE PRIORITIES
In some cases managers do not wish to express their preferences among various goals in
terms of weighted deviation variables, for the process of assigning weights may seem too
arbitrary or subjective. In such cases it may be more acceptable to state preferences in terms
of absolute priorities (as opposed to weights) to a set of goals. This approach, which
requires that goals be satisfied in a specific order, is illustrated in the following example.
With weightings, the goal programming model is solved just once. With priorities, the goal
programming model is solved in stages as a sequence of models.

Swenson’s Media Selection Model: A Minicase Tom Swenson, a senior part-
ner at J. R. Swenson, his father’s advertising agency, has just completed an agreement with a
pharmaceutical manufacturer to mount a radio and television campaign to introduce a
new product, Mylonal. The total expenditures for the campaign are not to exceed $120,000.
The client is interested in reaching several audiences with this campaign. To determine how
well a particular campaign meets this client’s needs, the agency estimates the impact of the
advertisements on the audiences of interest. The impact is measured in rated exposures, a
term that means “people reached per month.” Radio and television, the two media the
agency is considering using, are not equally effective in reaching all audiences. Data rele-
vant to the Mylonal campaign are shown in Table 12.3.

After lengthy discussions with the client, Tom accepts the following goals for this cam-
paign. Tom feels that the order in which he has listed his goals reflects the absolute priority
among them.

1. He hopes total exposures will be at least 840,000.
2. In order to maintain effective contact with the leading radio station, he hopes to

spend no more than $90,000 on TV advertising.
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3. He feels that the campaign should achieve at least 168,000 upper-income exposures.
4. Finally, if all other goals are satisfied, he would like to come as close as possible to

maximizing the total number of exposures. He notes that if he spends all of the
$120,000 on TV advertising he would obtain 1,680,000 exposures (120 * 14,000), and
this is the maximum obtainable.

This is clearly a model with a number of constraints. It is not quite a typical mathe-
matical programming model, however, since Tom has a number of objectives. Nevertheless,
he feels that a mathematical programming approach will help him understand and solve
the model. He thus proceeds in the typical manner. To model the problem, he introduces
the notation

x1 = dollars spent on TV (in thousands)

x2 = dollars spent on radio (in thousands)

Since his highest-priority goal is total exposures, he feels that a reasonable way to
model the problem is to use total exposures as the objective function and to treat the other
goals as constraints.

An Infeasible Model The formulation and spreadsheet solution of this model
(“Base Case” of SWENSON.XLS) are shown in Figure 12.13. Each constraint and the
objective function are labeled to indicate the purpose they serve. The Solver Results dialog
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Table 12.3

Exposures per $1000
Expenditure

TV RADIO

Total 14,000 6000

Upper Income 1200 1200

FIGURE 12.13

Maximizing Total Exposures

Cell Formula Copy To

A2 = SUMPRODUCT(C3:D3,C7:D7) —
B13 = SUM(C3:D3) —
B14 = C3 —
B15 = SUMPRODUCT(C3:D3,C11:D11) —



box tells Tom that the model is infeasible. Clearly, since it is infeasible, there is no way to
satisfy simultaneously the three goals (total expenditures, TV expenditure, and upper-
income exposures) that Tom has stated as constraints. Since there are only two decision
variables in this model, the graphical approach can be used to investigate Tom’s initial for-
mulations. The analysis in Figure 12.14 clearly shows that there are no points that satisfy
both the first (total expenditures) and the third (upper-income exposures) constraints. At
this point, Tom could attempt to approach the model somewhat differently. He might
change one or more of his goals, or perhaps the objective function, and start again. In gen-
eral, however, this is not a satisfactory systematic approach. In models with many decision
variables and several conflicting goals, restructuring the model to create a new model that
has a feasible solution could prove to be difficult. More important, in this restructuring
process, the essence of the real model could be lost.

Recall that Tom is not indifferent about the various goals; indeed, he has stated an
absolute priority among them. Goal programming with absolute priorities is designed to
handle exactly the type of decision process Tom Swenson wants. It is a sequential process in
which goals are added one at a time (in the order of decreasing priority) to an LP model.

Swenson’s Goal Programming Model In order to set up his model as a goal
program, Tom notes that the first goal, if violated, will be underachieved. The second goal,
if violated, will be overachieved, and so on. Employing this reasoning, he restates his goals,
in descending priority, as

1. Minimize the underachievement of 840,000 total exposures (i.e., Min u1, subject to
the condition 14,000 x1 + 6000x2 + u1 ≥ 840,000; u1 ≥ 0).

2. Minimize expenditures in excess of $90,000 on TV (i.e., Min v2, subject to the condi-
tion x1 – v2 ≤ 90; v2 ≥ 0).

3. Minimize underachievement of 168,000 upper-income exposures (i.e., Min u3, sub-
ject to the condition 1200x1 + 1200x2 + u3 ≥ 168,000; u3 ≥ 0).

4. Minimize underachievement of 1,680,000 total exposures—the maximum possible
(i.e., Min u4, where 14,000x1 + 6000x2 + u4 ≥ 1,680,000; u4 ≥ 0).

Note that Tom’s priorities are now clearly stated in terms of either minimizing under-
achievement (i.e., minimizing a ui) or minimizing overachievement (i.e., minimizing a vi).
His goals, as stated above, have been expressed as inequalities in accord with our previous
discussion. This method will facilitate a graphical analysis.

Given that he has correctly formulated his priorities, Tom must distinguish between
(1) system constraints (all constraints that may not be violated) and (2) goal constraints. In
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FIGURE 12.14

Maximizing Total Exposures:
A Graphical Approach
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his model, the only system constraint is that total expenditures will be no greater than
$120,000. Thus (since the units of x1 and x2 are thousands), we have

x1 + x2 ≤ 120 (S)

In goal programming notation, Tom’s model can now be expressed as follows in Figure 12.15:
Note that the objective function consists only of deviation variables and is of the Min

form. As already stated, all goal programming formulations are minimization models, as
the objective is to come as close as possible to the goals. The terms serve merely to indicate
priorities, with P1 denoting highest priority, and so on. What the problem statement above
means precisely is

1. Find the set of decision variables that satisfies the system constraint (S) and that also
gives the Min possible value to u1 subject to constraint (1) and x1, x2, u1 ≥ 0. Call this
set of decisions FR I (i.e., “feasible region I”). Considering only the highest goal, all of
the points in FR I are “optimal” (i.e., the best that Tom can do) and (again consider-
ing only the highest goal) he is indifferent as to which of these points he selects.

2. Find the subset of points in FR I that gives the Min possible value to v2, subject to con-
straint (2) and v2 ≥ 0. Call this subset FR II. Considering only the ordinal ranking of the
two highest-priority goals, all of the points in FR II are “optimal,” and in terms of these
two highest-priority goals Tom is indifferent as to which of these points he selects.

3. Let FR III be the subset of points in FR II that minimize u3, subject to constraint (3)
and u3 ≥ 0.

4. FR IV is the subset of points in FR III that minimize u4, subject to constraint (4) and
u4 ≥ 0. Any point in FR IV is an optimal solution to Tom’s overall model.

Graphical Analysis and Spreadsheet Implementation of the Solution
Procedure Since Tom’s marketing model has only two decision variables, the solution
method above can be accomplished with graphical analysis. In all real-world models, the
spreadsheet with its Solver tool would be used. In the next section we show how this can be
done using LP.

1. In Figure 12.16, both the spreadsheet output (new sheet called “First Goal” in the
same SWENSON.XLS) and the geometry reveal that the Min of u1 s.t. (S), (1), and x1,
x2, u1 ≥ 0 is = 0. Although Solver returns optimal values for and these values
are not of interest. The important information is that = 0, which tells us that the
first goal can be completely attained. Alternative optima for the current model are
provided by all values of (x1, x2) that satisfy the conditions

FR I � 
 x1 + x2 ≤ 120
14,000x1 + 6000x2 ≥ 840,000
x1, x2 ≥ 0

u*1
x*2 ,x*1u*1
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FIGURE 12.15

Goal Program Formulation
Min P1u1 + P2v2 + P3u3 + P4u4
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FIGURE 12.16

First Goal
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At any such point Tom’s first goal is attained ( = 0) so that, in terms of only the
first goal, these decisions are equally preferable. Thus FR I is the shaded area ABC in
Figure 12.16.

The line labeled (1) represents goal 1. The arrow marked u1 = 0 indicates that at
all points to the right of line (1) goal 1 is achieved.

2. In the spreadsheet formulation in Figure 12.17 (new sheet called “Goal 2”), we have
entered the constraints defining FR I (constraints in cells B10:D11), together with the
new goal constraint (2) (shown in cells B12:D12), and we see that

Min v2

s.t. x in FR I, goal (2), and v2 ≥ 0

u*1



is = 0. Thus, FR II is defined by

which is the shaded area ABDE, clearly a subset of FR I. As expected, the size of the
feasible region has become smaller.

FR II �
x1 + x2 ≤ 120
14,000x1 + 6000x2 ≥ 840,000
x1 ≤ 90
x1, x2 ≥ 0

v*2
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Goal 2
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Continuing in this way, Figure 12.18 (new sheet called “Goal 3”) shows that FR III is the
line segment BD. In this case = 24,000. Although the first two goals were completely
attained (since = = 0), the third goal cannot be completely attained because > 0. At
this stage, Tom is indifferent about any decision satisfying

which defines the line segment BD.

FR III �
x1 + x2 ≤ 120
14,000x1 + 6000x2 ≥ 840,000
x1 ≤ 90
1200x1 + 1200x2 ≥ 168,000 – 24,000 = 144,000

u*3v*2u*1
u*3

FIGURE 12.18

Goal 3
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Finally, Figure 12.19 (new sheet called “Optimal”) shows the optimal solution at point
D. Recall that the fourth goal is to minimize underachievement of the maximum possible
number of exposures, which is 1,680,000. Thus, we wish to minimize the underachieve-
ment u4 where

14,000x1 + 6000x2 + u4 ≥ 1,680,000.

In Figure 12.19 we find the unique optimum = 90 and = 30; that is, Tom should spend
$90,000 on TV advertising and $30,000 on radio advertising. This fact is verified in the geo-

x*2x*1

FIGURE 12.19

Optimal Solution
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metric analysis, where it is clear that point D (x1 = 90, x2 = 30) is closer to the line that
describes goal 4 (14,000x1 + 6000x2 = 1,680,000) than any other point in FR III (i.e., than
any other point on the segment BD). We also note that = 240,000. Thus, Tom achieves
only 1,680,000 – 240,000 = 1,440,000 exposures.

We see, then, that goal programming with absolute priorities allows a manager (like
Tom) to solve a model in which there is no solution that achieves all the goals, but where he
is willing to specify an absolute ranking among the goals and successively restrict his atten-
tion to those points that come as close as possible to each goal.

COMBINING WEIGHTS AND ABSOLUTE PRIORITIES
It is possible to combine, to some extent, the concepts of weighted and absolute priority
goals. To illustrate this fact, we return to Tom Swenson’s advertising model.

In reviewing the results of the absolute priority study, Tom and his client begin to dis-
cuss the importance of the older members of the Mylonal market. In particular, they focus
on the number of exposures to individuals 50 years old or older. Again, they see that radio
and TV are not equally effective in generating exposures in this segment of the population.
The exposures per $1000 of advertising are as follows in Table 12.4:

u*4

If there were no other considerations, Tom would like as many 50-and-over exposures as
possible. Since radio yields such exposures at a higher rate than TV (8000 > 3000), Tom
sees that the maximum possible number of 50-and-over exposures would be achieved by
allocating all of the $120,000 available to radio. Thus, the maximum number of 50-and-
over exposures is 960,000 (=120 × 8000). Tom and his client would like to come as close as
possible to this goal (minimize underachievement) once the first three goals are satisfied.
Recall, however, that they also want to come as close as possible to the goal of 1,680,000
total exposures (minimize underachievement) once the first three goals are satisfied. To
resolve this conflict of goals, they decide to use a weighted sum of the deviation variables as
the objective in the final phase of the absolute priorities approach. It is their judgment that
underachievement in the fifth goal (960,000 exposures to the 50-and-over group) is three
times as serious as underachievement in the fourth goal (1,680,000 total exposures). The
formulation, its solution (a new sheet called “Weighted” in the same SWENSON.XLS), and
graphical analysis are presented in Figure 12.20.

From the spreadsheet we see that the optimal solution to this model is point B ( =
15, = 105). Recall that when the objective function was to minimize u4, the optimal deci-
sion was point D ( = 90, = 30). Thus, in the graphical analysis, we see that the new
objective function has moved the optimal solution from one end of FR III to the other.
There is no obvious graphical way to find the optimal solution to this model; that is, there
is not an obvious objective function contour to push in a downhill direction that takes us to
the point x1 = 15, x2 = 105. It is, however, intuitively appealing to see that the optimal solu-
tion is as close as possible to the more heavily weighted goal. We could perform a sensitiv-
ity analysis on the weights in the objective function to see when the solution changes to
point B from point D.

This completes the analysis of Tom Swenson’s advertising campaign model. The gen-
eral sequential LP procedure described above for goal programming with absolute priori-
ties holds for any model in which the system constraints and the goal constraints are for-
mulated with linear functions. For each new model a single constraint is added to the
previous model, and the objective function is modified slightly. Generally speaking, a fairly

x*2x*1
x*2

x*1

Table 12.4 EXPOSURE GROUP TV RADIO

50 and over 3000 8000
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FIGURE 12.20
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50 – and – over goal (u5)

B

140

120

60 90 120

large number of decision variables can be involved. The example with two variables was
useful because it made it possible to present, along with the spreadsheet results, geometric
interpretations, which add insight to the solution technique.

The foregoing model is useful in indicating how conflicting and noncommensurate
goals (i.e., apples and oranges) can be simultaneously considered by means of goal pro-
gramming. Thus, it gives some insight into why goal programming is a promising and
increasingly useful tool in analyzing public policy questions.



12.5
ANALYTIC HIERARCHY
PROCESS

This section deals with the real-world topic of making a decision when there are multiple
objectives or criteria to consider. There are numerous examples where these kinds of deci-
sions are made every day. Consider the following:

• Choosing which employment offer to accept from among several offers

• Picking which computer to buy (or which automobile, etc.)

• Deciding which new product to launch first

• Selecting a site for a new restaurant, hotel, manufacturing facility, and so on

• Selecting which university to attend

• Identifying the best business or engineering school in the country

• Rating the best cities to live in

• Choosing a new information system for your company that does payroll,
accounting, and so forth (or choosing any new software package from
competing vendors)

• Selecting what combination of taxes (property, sales, gas, etc.) to levy on the citi-
zens of a locale.

For example, when you go to buy a car, you might consider numerous factors, not the least
of which include the price, its safety, the engine size, fuel economy, and so forth. Each of the
examples identified previously likewise would have numerous factors to consider in mak-
ing these complex decisions.

A simple way to attack such a decision would be to assign weights to each of the crite-
ria that were to be considered in making the decision. Then rank each decision alternative
on a scale from 1 (worst) to 10 (best). Finally, you would multiply the weights times the
rankings for each criterion and sum them up. The alternative with the highest score would
be the most preferred. Let’s consider an example.

Your boss has asked you to help her buy the next computer for the office. You have to
choose between three computers: (1) Model A that runs an AMD K6-II chip at 400 MHz,
(2) Model B that runs a Celeron chip at 333 MHz, and (3) Model C that runs a Pentium II
chip at 450 MHz. The criteria that are important to you and your boss are price, speed, hard-
disk size, and warranty/support. You decide that price should get 50% of the total weight in
making the decision, speed 15%, hard-disk size 20%, and warranty/support 15%. Next you
rank each of the three models on these four criteria. You rank them on a scale from 1 to 10 (as
described earlier) as shown in the following spreadsheet (COMPUTER.XLS) in Figure 12.21.
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FIGURE 12.21

Multi-Attribute Decision
Model for Buying a
Computer

Cell Formula Copy To

C8 = SUM (C4:C7) —
E8 = SUMPRODUCT ($C$4:$C$7, E4:E7) F8:G8



As can be seen, Model B comes out with the highest weighted score (7.05) and thus
would be your recommendation to your boss. This approach is quite simplistic and there
are difficulties in setting the ranking scales on such different criteria.

Analytic hierarchy process (AHP) also uses a weighted average approach idea, but it
uses a method for assigning ratings (or rankings) and weights that is considered more reli-
able and consistent than the simple method described above. AHP is based on pairwise
comparisons between the decision alternatives on each of the criteria. Then a similar set of
comparisons are made to determine the relative importance of each criterion and thus pro-
duces the weights. The basic procedure is as follows:

1. Develop the ratings for each decision alternative for each criterion by

• developing a pairwise comparison matrix for each criterion

• normalizing the resulting matrix

• averaging the values in each row to get the corresponding rating

• calculating and checking the consistency ratio

2. Develop the weights for the criteria by

• developing a pairwise comparison matrix for each criterion

• normalizing the resulting matrix

• averaging the values in each row to get the appropriate weights

• calculating and checking the consistency ratio

3. Calculate the weighted average rating for each decision alternative. Choose the one
with the highest score.

We will demonstrate this procedure on a new example. Sleepwell Hotels is looking for
some help in selecting the “best” revenue management software package from among sev-
eral vendors. Mark James is the director of revenue management for this chain of hotels
and has been given the task of selecting the software package. He has identified three ven-
dors whose software seems to meet their basic needs—Revenue Technology Corporation
(RTC), PRAISE Strategic Solutions (PSS), and El Cheapo (EC). The criteria that he thinks
are important in making this decision are (1) the total cost of the installed system, (2) the
follow-up service provided over the coming year, (3) the sophistication of the underlying
math engines, and (4) the amount of customization for Sleepwell. The first step in the AHP
procedure is to make pairwise comparisons between the vendors for each criterion. The
scale that is used in making these comparisons is a standard one and is described as follows:

RATING DESCRIPTION

1 Equally preferred
3 Moderately preferred
5 Strongly preferred
7 Very strongly preferred
9 Extremely strongly preferred

Values of 2, 4, 6, or 8 may also be assigned and represent preferences halfway between the
integers on either side (e.g., a 2 is between a 1 and a 3—somewhere between equally pre-
ferred and moderately preferred).

Mark starts with the first criterion (total cost) and generates the following data in his
spreadsheet (sheet “Total Cost” in SLEEPWLL.XLS shown in Figure 12.22). The table is
read as follows: The vendor in the row is being compared to the vendor in the column. If
the vendor in the row is preferred to the vendor in the column, then a number from 1 to 9
(from the AHP table) is assigned to the cell at the intersection of the row and column. If,
however, the vendor in the column is preferred to the vendor in the row, then 1 divided by
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(a number from 1 to 9) is assigned to the cell at the intersection of the row and column.
Obviously since vendor 1 (RTC) is equally preferred to vendor 1, then a “1” is assigned to
that row/column and in fact, all along the diagonal. Vendor 1 is moderately to strongly pre-
ferred to vendor 2 on the Total Cost basis and so a “4” is assigned in the first row, second
column (cell C4). Vendor 3 (EC) is equally to moderately preferred to Vendor 1 (RTC) and
so a “1/2” is assigned in row 1, column 3 (cell D4). Mark has set up his spreadsheet so that
once the entries above and to the right of the diagonal are entered (cells C4, D4, and D5), it
automatically calculates the reciprocal preferences. For example, since vendor 1 compared
to vendor 2 was assigned a “4,” then the comparison of vendor 2 to vendor 1 gets a “1/4”
automatically (cell B5).

Once all the relevant pairwise comparisons have been made, the matrix needs to be
normalized. This is done by totaling the numbers in each column. Each entry in the column
is then divided by the column sum to yield its normalized score. Mark has now done this in
his spreadsheet and it is shown in cells B12:D14 of Figure 12.23. His next step is to calculate
the average score of each vendor for the “Total Cost” criterion. These values are shown in
column E of Figure 12.23. Mark sees that EC has the highest average score on this factor.

Once the normalized matrix is finished, he must calculate the consistency ratio and
check its value. The purpose for doing this is to make sure Mark was consistent in the pref-
erence ratings he expressed in the original table. For example, if Mark expressed strong
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FIGURE 12.22

Pairwise Comparison on
Total Cost

Cell Formula Copy To

B5 = 1/C4 —
B6 = 1/D4 —
C6 = 1/D5 —

FIGURE 12.23

Normalized Matrix for 
Total Cost

Cell Formula Copy To

B8 = SUM(B4:B6) C8:D8
B12 = B4/B$8 B12:D14
E12 = AVERAGE(B12:D12) E13:E14
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FIGURE 12.24

Consistency Ratio for 
Total Cost

Cell Formula Copy To

F12 = MMULT(B4:D4,$E$12:$E$14)/E12 F13:F14
F16 = (AVERAGE(F12:F14)-3)/2 —
F20 = F16/F18 —

preference for vendor 1 over vendor 2 on the Total Cost criterion, and moderate preference
for vendor 2 over vendor 3, then it would be inconsistent to express equal preference
between vendors 1 and 3 or worse to express a preference for vendor 3 over vendor 1. There
are three steps in order to arrive at the consistency ratio:

1. Calculate the consistency measure for each vendor.
2. Calculate the consistency index (CI).
3. Calculate the consistency ratio (CI/RI where RI is a random index).

To calculate the consistency measure we can take advantage of Excel’s matrix multiplica-
tion function =MMULT( ). As Mark shows us in Figure 12.24 that for vendor 1 (RTC) you
multiply the average rating for each vendor (cells E12:E14) times the scores in the first row
(cells B4:D4) one-at-a-time, sum these products up and divide this sum by the average rating
for the first vendor (cell E12). A similar calculation is done for the second and third vendors.
Ideally the consistency measures would be equal to the number of decision alternatives in the
example (in our case, we have three vendors). To calculate the consistency index (CI), Mark
takes the average consistency measure of the three vendors, subtracts the number of alterna-
tives (n), and divides the whole quantity by n – 1. This is shown in cell F16 of Figure 12.24 and
Mark sees that his CI has a value of 0.001. The final step to find the consistency ratio (CR) is
to divide the CI by a random index (RI) that is provided by AHP and shown below:

n RANDOM INDEX

2 0.00
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45

10 1.51

This consistency ratio is shown in cell F20 of Figure 12.24 and in Mark’s example it equals
0.002.



For a perfectly consistent manager, the consistency measures will equal n and therefore, the
CIs will be equal to zero and so will the consistency ratio. If this ratio is very large (Saaty
suggests > 0.10), then the manager is not consistent enough and the best thing to do is go
back and revise the comparisons (in most cases, you’ll have made a simple mistake and this
calculation will alert you to that fact).

Mark must now do the same thing for the other three criteria. He can easily do this by
copying the “Total Cost” sheet into three other sheets (“Service,” “Sophistication,”
“Custom”) and then simply changing the pairwise comparisons. The results of this are
shown in Figures 12.25 to 12.27. Mark notes that in all three cases, the CR values range
from 0.0 to 0.047, which means he’s being consistent. He also notes that PSS is the winner
on the Service criterion, RTC and PSS are tied for the best in terms of Sophistication, and
PSS is considered the best on Customization.

All of this work concludes the first step in the procedure. The next step (2) in the pro-
cedure is to use similar pairwise comparisons to determine the appropriate weights for
each of the criteria. The process is the same in that we make comparisons, except that now
we make the comparisons between the criteria not the vendors as we did in step 1. Mark
does this in a new sheet called “Weights” (in the same workbook) and it’s shown in Figure
12.28.

C H A P T E R  1 2 Multi-Objective Decision Making and Heuristics CD12-29

FIGURE 12.25

Consistency Ratio for Service

FIGURE 12.26

Consistency Ratio for
Sophistication
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FIGURE 12.27

Consistency Ratio for
Customization

FIGURE 12.28

Consistency Ratio for
Weights on Criterion

Cell Formula Copy To

B5 = 1/C4 —
B6 = 1/D4 —
B7 = 1/E4 —
C6 = 1/D5 —
C7 = 1/E5 —
D7 = 1/E6 —
B8 = SUM(B4:B7) C8:E8
B12 = B4/B$8 B12:E15
F12 = AVERAGE(B12:E12) F13:F15
G12 = MMULT(B4:E4,$F$12:$F$15)/F12 G13:G15
G16 = AVERAGE(G12:G15)/3 —
G20 = G16/G18 —



12.6
NOTES ON IMPLEMENTATION

Mark sees that Sophistication of the math algorithms gets the most weight (52.5% in
cell F14), followed by Cost (30.4% in cell F12) based on the pairwise comparisons. Again,
he’s pleased that his consistency measures are close to 4 and therefore that his CI and CR
are close to zero.

The final step is to calculate the weighted average ratings of each decision alternative
and use the results to decide from which vendor to purchase the new software package.
This last step is just like the simple example we gave at the beginning of this section, and
Mark pulls the results from all of his other worksheets in order to make this calculation (see
the “Comparison” sheet in the same COMPUTER.XLS). This is shown in Figure 12.29
From these results, Mark sees that RTC (.378 in cell C8) barely edges out PSS (.376 in cell
D8) for the new software contract, while EC remains a distant third.

As is true of most types of quantitative models, heuristic approaches are typically imple-
mented with the spreadsheet or some other computer program. One difference, in prac-
tice, between using heuristic procedures and using more formal models such as linear or
quadratic programming, is that in the latter case the computer software already exists. In
the heuristic case, however, the application is often ad hoc, which implies that the software
must be constructed. A typical application of heuristics is, as stated earlier, the area of
large combinatorial models, for which obtaining a solution either by enumeration or by
applying a formal mathematical or integer programming model would be prohibitively
expensive. In all applications of heuristics there is an implicit managerial judgment that
“acceptability” rather than “optimality” is an appropriate way of thinking. In other words,
it is felt that “good solutions” as opposed to “optimal solutions” can be useful and satisfac-
tory. This philosophy is particularly well suited to models that are rather vague in their state-
ment, such as high-level models with surrogate objectives or for which there may be numerous
conflicting criteria of interest and for which, consequently there is not a clear, definitive
single-objective function.
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FIGURE 12.29

Weighted Average AHP
Ratings Using AHP Weights

Cell Formula Copy To

B3 = WEIGHTS!F12 B4:B6
C3 = TOTAL COST!E12 —
D3 = TOTAL COST!E13 —
E3 = TOTAL COST!E14 —
C4 = SERVICE!E12 —
D4 = SERVICE!E13 —
E4 = SERVICE!E14 —
C5 = SOPHISTICATION!E12 —
D5 = SOPHISTICATION!E13 —
E5 = SOPHISTICATION!E14 —
C6 = CUSTOM!E12 —
D6 = CUSTOM!E13 —
E6
C8                      = SUMPRODUCT($B$3:$B$6,C3:C6)                                      D8:E8

= CUSTOM!E14 —



In practice, the use of heuristics is in some cases closely linked to the field of artificial
intelligence, where the computer is programmed with heuristic techniques to prove theo-
rems, play chess, and even write poems.

Perhaps the most common use of heuristics in management science has been, to date,
in models of assembly-line balancing, job-shop scheduling, and resource allocation in pro-
ject management. However, recently there has been an increase in the scope of applications
to such areas as media selection in marketing, political districting, scheduling of university
classes, or positioning urban systems.

In the implementation of all heuristic models, managerial interaction and feedback
must play perhaps an even greater role than in the case of more formal modeling, for in the
heuristic case the manager must assess not only the model but, implicitly, the heuristic
algorithm as well. This assessment is necessary because, for the same model, different heuris-
tics will lead to different “solutions.”

This close interaction between the model and the decision-maker is also manifest in
goal programming when the decision-maker must assign priorities to various goals, such as
in the form of ordinal ranking (i.e., absolute priorities). Goal programming is an intuitively
appealing, and in this sense a “heuristic,” approach to models with multiple objectives. In
goal programming with absolute priorities, the manager must consider carefully the rela-
tive importance or utility of his or her goals. Depending on the spreadsheet model output,
the decision-maker may wish to change priorities, or even the number of goals, and rerun
the spreadsheet model. In other words, just as with LP, sensitivity analysis becomes an
important aspect of implementation. Since goal programming is still more or less in its
infancy, the field is developing from a theoretical point of view at a rapid rate, and it seems
clear that this development will prompt greater use of the technique, especially as sensitiv-
ity analysis becomes better understood.

In practice, computer programs do exist for solving large-scale goal programs in the
batch processing mode, but typically these are not part of the standard program libraries.
For models of modest size, the interactive mode is ideally suited to the sequential technique
described in this chapter.
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Key Terms

Heuristic Algorithm. An algorithm that
efficiently provides good approximate
solutions to a given model, often with
estimates as to the goodness of the
approximation.

Heuristic. An intuitively appealing rule
of thumb for dealing with some aspect
of a model.

Heuristic Program. A collection of
heuristics and/or heuristic algorithms.

Combinatorial Optimization. An opti-
mization model with a finite number
of feasible alternatives.

Setup Time. Time required before an
activity can begin.

Greedy Algorithm. An algorithm that
says that the maximum improvement
should be made at each step of a
sequential process.

Next Best Rule. Same as the greedy
algorithm.

Precedence Relationships. Means that
certain activities must be completed
before others may begin.

Personnel Loading Chart. A bar chart
showing the total number of people
required per week in order to carry out
a given schedule of activities.

Slack. In the project scheduling context
this refers to the maximum amount of
time any given activity can be delayed
without delaying completion of the
overall project.

Goal Programming. Seeks allowable
decisions that come as close as possible
to achieving specified goals.

Deviation Variables. Variables used in
goal programming to measure the

extent to which a specified goal is
violated.

Goal Interval Constraint. A constraint
for which goals are specified by an
interval of indifference, rather than by
a specific numerical value.

Absolute Priority. A form of goal pro-
gramming in which goals must be sat-
isfied in a specific order.

Analytic Hierarchy Process (AHP). A
procedure that uses pairwise compar-
isons to make decisions among com-
peting alternatives when there are mul-
tiple criteria that are considered
important.
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Self-Review Exercises

True-False
1. T F Heuristic algorithms are guaranteed to be within a

specified percentage of optimality at termination.

2. T F The optimal solution to a combinatorial opti-
mization model can, in principle, be found by complete
enumeration.

3. T F An alternative heuristic in the model of scheduling
with limited resources is to move forward that activity
that contributes most to the overload (i.e., utilizes the
largest number of people).

4. T F Goal programming is the only quantitative
technique designed for use on models with multiple
objectives.

5. T F Each step in goal programming with absolute pri-
orities introduces a new goal and eliminates from further
consideration all current candidates that do not satisfy
this new goal as well as possible.

6. T F Consider the goal constraint 12x1 + 3x2 + u1 – 
v1 = 100. Suppose that, because of other constraints in the
model, the goal cannot be achieved. If u1 is positive, the
goal is overachieved.

7. T F One way to state priorities among goals is to place
weights on deviation variables.

8. T F Consider the goal interval constraint 180 ≤ 4x1 +

12x2 ≤ 250. A correct goal formulation is

4x1 + 12x2 – v1 ≤ 250

4x1 + 12x2 – u1 ≥ 180

9. T F If a goal interval constraint cannot be achieved
(exactly satisfied), then one deviation variable will be pos-
itive, and the constraint in which that variable appears will
be active.

10. T F In goal programming a system constraint is not
permitted to be violated.

11. T F A goal programming model cannot be infeasible.

Multiple Choice

12. If changeover time of n jobs on a single machine is
sequence-dependent, the problem of minimizing total
setup time requires the inspection of
a. n sequences
b. 1 sequence
c. n! sequences

d. sequences

13. The intuitively appealing notion that motivates a greedy
algorithm is to
a. get as close as you can to the optimal solution
b. do the best you can at the current step
c. minimize the number of steps required
d. none of the above

14. In the facility scheduling model, subtracting the mini-
mum setup time in a column from the other entries in
that column
a. is a heuristic based on the notion that it is relative costs

that matter
b. is guaranteed to yield an optimal solution if the greedy

algorithm is applied
c. makes the greedy algorithm not useful
d. all of the above

�n
2�

15. If a goal programming model includes the constraint 
g1(x1, . . . , xn) + u1 – v1 = b1 and the term 6u1 + 2v1 in the
objective function, the decision-maker
a. prefers g1(x1, . . . , xn) to be larger than, rather than

smaller than, b1
b. prefers g1(x1, . . . , xn) to be smaller than, rather than

larger than, b1
c. is indifferent as to whether g1(x1, . . . , xn) is larger than

or smaller than b1

16. Models with multiple objectives
a. are difficult because it is often true that improving one

objective will hurt another
b. are difficult because the objectives may be in noncom-

mensurate units (i.e., the problem of “combining apples
and oranges”)

c. can sometimes be treated with the goal programming
approach

d. all of the above

Questions 17, 18, 19 apply to the following problem:
1. g1(x1, x2) ≤ b1 is a system constraint
2. minimizing underachievement of g2(x1, x2) = b2 is top

priority
3. minimizing overachievement of g3(x1, x2) = b3 is next in

priority



CD12-34 C D  C H A P T E R S

17. The first step of the solution procedure is
a. Min u2, s.t. g1(x1, x2) ≤ b1; g2 – u2 = b2; x1, x2, u2 ≥ 0
b. Min u2, s.t. g1(x1, x2) ≤ b1; g2 + u2 ≥ b2; x1, x2, u2 ≥ 0
c. Min u2, s.t. g1(x1, x2) ≤ b1; g2 – u2 ≤ b2; x1, x2, u2 ≥ 0

18. Let FR I denote the points (x1, x2) obtained in the first step
of the solution procedure. The second step is
a. Min u3 + v3, s.t. (x1, x2) in FR I and g3(x1, x2) + u3 – 

v3 = b3
b. Min u3 , s.t. (x1, x2) in FR I and g3(x1, x2) + u3 ≤ b3
c. Min v3, s.t. (x1, x2) in FR I and g3(x1, x2) – v3 ≤ b3

19. In this model
a. at least one goal will be achieved
b. if the first goal is not achieved, the second goal will not

be achieved
c. none of the above

20. Consider a goal program with the constraint

g1(x1, . . . , xn) – v1 ≤ b1, v1 ≥ 0

with v1 in the objective function. Then
a. the goal is to minimize overachievement
b. if > 0 then the constraint will be active
c. neither of the above
d. both a and b

v*1

Answers

1 . F, 2 . T, 3 . T, 4 . F, 5 . T, 6 . F, 7 . T, 8 . F, 9 . T, 1 0 . T, 1 1 . F, 1 2 . c , 1 3 . b ,
1 4 . a , 1 5 . a , 1 6 . d , 1 7 . b , 1 8 . c , 1 9 . c , 2 0 . d

Skill Problems

12-1. For the minimax scheduling model, find an alternative optimal solution to the one given in Figure
12.12.

Problems 12-2, 12-3, and 12-4 refer to the following example of the so-called facilities layout
model:

Solomon Farson, a management consultant, has been hired to redo the layout of a small bank. There
are four key departments to be taken into consideration: (1) Trusts, (2) Estates, (3) Accounting, (4)
Savings. These four departments must be assigned to four locations. The distances between locations
are given in Table 12.5. Thus the distance from location 2 to location 4 is 1 unit, from 4 to 1 is 1 unit,
and so on. A measure of the two-way “daily flows” between the four key departments is shown in
Table 12.6.

The problem is to assign the four departments to the four locations (one department per loca-
tion) in such a way as to minimize the sum of the distance-weighted daily flows. For example, if we
make the assignment of departments to locations as follows: 1 → 1, 2 → 2, 3 → 3, 4 → 4, then the
objective value will be

weighted two-way cost between facilities 1 and 2 = distance × flow = 2(15) = 30

weighted two-way cost between facilities 1 and 3 = distance × flow = 3(20) = 60

weighted two-way cost between facilities 1 and 4 = distance × flow = 1(16) = 16

weighted two-way cost between facilities 2 and 3 = distance × flow = 3(13) = 39

weighted two-way cost between facilities 2 and 4 = distance × flow = 1(9) = 9

weighted two-way cost between facilities 3 and 4 = distance × flow = 2(19) = 38

total cost = 192

Table 12.5

Distances Between
Locations

LOCATION

Location 1 2 3 4

1 0 2 3 1

2 2 0 3 1

3 3 3 0 2

4 1 1 2 0
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Table 12.6

Flows Between
Departments

DEPARTMENT

Dept. 1 2 3 4

1 0 15 20 16

2 15 0 13 9

3 20 13 0 19

4 16 9 19 0

12-2. Suppose Solomon assigned department 1 to location 4, department 2 to location 3, department 3 to
location 2, and department 4 to location 1.
(a) What would be the distance between departments?
(b) What would be the total cost of Solomon’s assignments?
(c) What is the total number of possible assignments of facilities to locations that Solomon would

consider if he were to attack the model by complete enumeration?
(d) For the general model of assigning n facilities to n locations, what is the total possible number of

assignments?
12-3. Suppose that department 1 is assigned to location 1. Draw a tree, analogous to Figure 12.1, showing

the remaining possible assignments of departments 2, 3, and 4 to locations 2, 3, and 4.
12-4. Still referring to Solomon and his layout model,

(a) How many different pairs of departments can be selected from four departments?
(b) Start from the answer to part (a) of Problem 12-2 to improve the assignment by employing

the following Best Pairwise Exchange Heuristic, as described here. (Many heuristics have
been proposed in the literature for attacking the facilities assignment model. In one study
[see Mojena et. al.] involving 12 facilities, it is reported that achieving a true optimum with a
branch-and-bound algorithm required 2 hours on a high-speed computer. In 7 seconds the
Best Pairwise Exchange Heuristic produced a proposal that was, in terms of associated objec-
tive values, within 3% of the optimum.) How much have you improved your objective
function?
Step 1: Find the potential improvement in the objective function associated with each pairwise

exchange of departments. For example, if departments 1 and 2 are exchanged, the new
assignment will be 1 → 3, 2 → 4, 3 → 2, and 4 → 1. That is, the location of departments
1 and 2 are changed, but departments 3 and 4 remain unchanged.

Step 2: Make the pairwise exchange that results in the largest improvement. Then repeat 
the procedure until no pairwise exchange will improve the value of the objective
function.

12-5. Sam Hull is a marketing manager for a pharmaceutical company. He must assign five detail people to
five hospitals. The expected sales are shown in Table 12.7.
(a) Use a greedy heuristic to assign each detail person to each hospital so that total expected sales are

maximized.
(b) Use the modified heuristic in Section 12.2 (i.e., after transforming the data by subtracting the

maximum sales in each column from all other entries in that column, then use the greedy
heuristic) to arrive at a new solution. How much better does this heuristic perform than the one
used in part (a)?

Table 12.7 HOSPITAL

Detail Person A B C D E

1 25 18 23 22 16

2 20 21 18 15 12

3 23 19 20 21 20

4 30 26 25 22 20

5 28 22 23 20 18
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Table 12.8 J1 J2 J3

No Setup $50 $35 $39

J1 — $30 $34

J2 $41 — $30

J3 $35 $25 —

D

E

C
A G

B H

F

Table 12.9 ACTIVITY TIME REQUIRED PERSONNEL

A 1 4

B 2 5

C 1 3

D 2 2

E 2 7

F 1 7

G 1 5

H 1 4

FIGURE 12.30

12-6. Three jobs—J1, J2, and J3—are to be machined on a lathe. The cost of setting up for a job depends on
the setup for the previous job. The cost for changeovers is given in Table 12.8. Currently the lathe is
not set up for any job.
(a) Use the greedy heuristic to schedule the jobs. The objective is to minimize the total setup cost.
(b) Use the modified heuristic in Section 12.2 to schedule the jobs.
(c) Does the modified heuristic always produce a better result than the greedy one?

12-7. Erma McZeal is in charge of quality control for the city of Chicago’s water supply. There are currently
three test stations located in Lake Michigan. Letting (x1, x2) denote coordinates in miles, the three
existing locations are placed as follows:

station 1: x1 = 2, x2 = 10

station 2: x1 = 6, x2 = 6

station 3: x1 = 1, x2 = 3

Erma’s job is to locate a new station in such a way as to minimize the total distance of the new sta-
tion from the three existing stations. Assume that, because of existing channel marker locations, dis-
tance is measured rectangularly. In other words, if the new station is located at (x1 = 3, x2 = 4), then
it is a distance of 3 – 2 + 4 – 10, or 7 (= 1 + 6) units, from station 1; and so on. Let (x1, x2)
denote the coordinates of the new station. Formulate a goal programming model to solve Erma’s
problem.

12-8. Figure 12.30 is the precedence diagram for the activities in a project. The time and the personnel
required for each activity are given in Table 12.9. Use the workload smoothing heuristic to generate a
schedule for this project.



12-9. Product Mix. A firm produces two products. Each one must be processed through two machines, each
of which has available 240 minutes of capacity per day. Each unit of product 1 requires 20 minutes on
machine 1 and 12 minutes on machine 2. Each unit of product 2 requires 12 minutes on machine 1
and 20 minutes on machine 2. In determining the daily product mix, management would like to
achieve the following goals:
1. Joint total production of 12 units
2. Production of 9 units of product 2
3. Production of 10 units of product 1
Suppose that management wishes to minimize the underachievement of each of these goals and that
predetermined priority weights w1, w2, and w3 are to be assigned to the three goals, respectively.
Formulate this as a goal programming model.

12-10. T & C Furniture Company (TCFC) manufactures tables and chairs. Write the goal constraints for the
following objectives (let the variables T and C represent the number of tables and chairs, respectively,
produced in a period):
(a) A table takes 10 hours to make and a chair 5 hours. The total number of work hours available

per period is 3,200. Though idle time and overtime are acceptable, TCFC would like the total
number of work hours to be as close to 3,200 as possible.

(b) A table uses one side of wood and a chair half a side; 300 sides of wood are available for a period
and no more can be bought. TCFC would like to use as much of this wood as possible in one
period.

(c) TCFC makes tables to order and is committed to providing 200 tables in a period. Extra tables, if
produced, have to be held in inventory, and the company would like to minimize the number of
tables held in inventory.

(d) The demand for chairs is uncertain, but is estimated to be between 200 and 250. The company
would like to produce chairs as close to this range as possible.

12-11. Consider the goal programming model:

Min P1v1 + P2v2 + P3u3 + P4(u4 + v4)

s.t. x2 + u1 – v1 = 100

x1 + x2 + u2 – v2 = 80

x2 + u3 = 40

x1 + 2x2 + u4 – v4 = 160

x1, x2, u1, u2, u3, u4, v1, v2, v3, v4 ≥ 0

(a) Use the graphical method to solve the model.
(b) Interpret the third goal x2 + u3 = 40.
(c) Replace x2 + u3 = 40 with x2 + u3 ≥ 40. What is the new interpretation?
(d) Use the graphical method to solve the model with the replacement prescribed in (c).

12-12. Consider the goal programming model:

Min P1v1 + P2v2 + P3v3 + P4(u4 + v4)

s.t. x2 + u1 – v1 = 100

x1 + x2 + u2 – v2 = 80

x1 – v3 = 40

x1 + 2x2 + u4 – v4 = 160

x1, x2, u1, u2, u3, u4, v1, v2, v3, v4 ≥ 0

(a) Use the graphical method to solve the model.
(b) Interpret the third goal x1 – v3 = 40.
(c) Replace x1 – v3 = 40 with x1 – v3 ≤ 40. What is the new interpretation?
(d) Use the graphical method to solve the model with the replacement prescribed in (c).
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12-13. Consider the following goal program:

Min P1u2 + P2v1 + P3u3

s.t. x1 + x2 + u1 – v1 = 80

x1 + u2 – v2 = 80

x2 + u3 ≥ 45

x1, x2, u1, v1, u2, v2, u3 ≥ 0

(a) Solve by the graphical method.
(b) Is the first-priority goal achieved?
(c) What about the second and third?
Note: In case of underachievement or overachievement, state actual numerical amounts of the

violations.
12-14. Al transportation company operates warehouses and distributes goods to retail outlets. Al has ware-

houses at five different locations and has four retail customers. The transportation costs per unit, the
demands, and the costs of operating the warehouses are given in Table 12.10. All warehouses have
unlimited capacity. Al would like to decide which warehouses should be operated and which should
be closed. The greedy open heuristic for doing this consists of opening the warehouse that saves the
most money and continuing to do this as long as money can be saved.
(a) Use the greedy open heuristic to solve this model. Which warehouses are opened?
(b) How much money is saved?

12-15. There are six jobs to be processed on two machines (cutting and grinding). Each job must go through
the cutting machine before being processed on the grinding machine. Assume that the sequence in
which jobs are processed is the same on both machines.

Table 12.11 shows the time (in hours) required to finish a job on each machine. The objective is
to schedule the jobs so that the time required to finish all jobs is minimized.
(a) How many alternatives should you compare for complete enumeration?
(b) What is the time required to finish all jobs if the jobs are processed in the ascending order of the

total processing time?
Note: A figure like Figure 12.7 may be helpful. In this application keep all tasks assigned to machine

1 in one row and those assigned to machine 2 in a second row.
12-16. Use AHP to help Mick Mott pick the university that he ought to attend for graduate school. He has

two schools that have offered him scholarships (Harvard and Stanford) and has determined that
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Table 12.10 RETAILER

Warehouse A B C D Fixed Cost of Operating Warehouse

1 5 4 1 6 31

2 9 7 3 5 35

3 8 1 7 4 20

4 4 3 6 2 29

5 6 3 5 2 38

Demand 10 15 6 5

Table 12.11 TIME REQUIRED FOR JOB (HOURS)

Machine A B C D E F

Cutting 3 4 2 1 5 3

Grinding 2 5 2 1 3 4

Total 5 9 4 2 8 7
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Table 12.12 MINE WHITENESS ABSORBENCY COSTS/TON

A 67.1 175 50

B 68.3 410 110

C 67.7 180 95

FIGURE 12.31

there are four criteria (scholarship amount, prestige, cost to live there, quality of town) that are
important to him. See COLLEGE.XLS on your student disk with the following data shown in Figure
12.31.
(a) What are the average ratings for the “Prestige” criterion?
(b) What are the average weights for each criterion?
(c) Which university would you recommend that Mick attend in the fall?

12-17. Wyoming Bentonite Inc. has three deposits of bentonite that are mined for the production of cat lit-
ter. Bentonite is a clay-like substance found in central Wyoming that has good absorption properties.
The three mines operated by Wyoming Bentonite have slightly differing characteristics of bentonite
as determined by calcium and sodium content. Increased calcium results in a whiter color, while
increased sodium leads to better absorbency. The customer is concerned with cost, absorbency, and
whiteness. The customer specification for whiteness is between 67.2 and 67.8. The specification for
absorbency is between 200 and 275. The characteristics of bentonite from each mine are given in
Table 12.12.

Management requires a minimum 15% of the blend to come from each mine.
(a) Find the minimum cost for the blend.
(b) If cost is not as important as whiteness and absorbency, find the blend that will place the blend

characteristics as close to the center of the customer specifications as possible. What is the cost of
that blend?

12-18. CD’s.com is an Internet retailer of music. They are trying to maximize revenue prior to their IPO.
They have decided to do this through a large marketing campaign in Denver, which is the corporate
headquarters. The marketing director believes that the company will be able to gain the most revenue
by targeting the teenage customer group first, then the twenty-something, and finally the thirty-
something age groups. The three biggest radio stations in Denver have given her the latest listener
survey information, shown in Table 12.13.

The company would like to reach 35,000 teens, 28,000 twenty-somethings and 20,000 thirty-
somethings.
(a) Find the minimum cost solution that meets the teen listener goal only.
(b) Find the minimum cost solution that meets the teen goal, plus the goal of meeting the twenty-

something listener group.
(c) Find the minimum cost solution that meets the goal of all three listening groups.
(d) What is the cost of parts (a), (b), and (c)?

Table 12.13 EXPOSURE

Station Teens 20s 30s Cost/min

KFOX 1,300 1,610 1,042 $157

KDOG 1,537 1,236 1,389 $136

KKAT 535 637 957 $117



12-19. A beer delivery company has a route with seven deliveries to be made. It originates from the brewery
(location 1). Assume that each delivery consumes five minutes. The travel time between stops is given
in Table 12.14. Assume that the truck can hold a maximum of four deliveries.
(a) Use the greedy algorithm to determine the route that would minimize driving time to all seven

of the delivery locations (this obviously will include a return trip to the brewery to pick up the
last three deliveries).

(b) If a larger truck could be obtained so that five deliveries could be completed before returning to
the brewery, how would the minimum driving time change?

(c) Could a better solution be obtained with a better algorithm?
12-20. Carol has a project to complete for a new Internet retailer. She has determined the number of soft-

ware writers needed to implement each activity in the project as well as the precedence of the activi-
ties (see Table 12.15).

Use the workload smoothing heuristic to smooth the use of personnel on the project.
12-21. Consider the setup times for the NC machines at Stamped Metal Parts Inc. There are four jobs to be

done and each job will require different setup times based on which job had been previously per-
formed (see Table 12.16). The reason for the different setup times is related to the tools and cutting
bits that are loaded on the machine for each job. Job zero is the initial unloaded machine condition
and is the starting point for the work.

Use the greedy algorithm to minimize total setup time for the four jobs.
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Table 12.14 TO

1 2 3 4 5 6 7 8

FROM 1 17 15 9 9 6 3 1

2 9 13 2 13 4 5 11

3 17 1 5 6 4 6 8

4 4 10 16 2 4 3 15

5 3 14 13 6 2 8 16

6 15 5 16 9 4 6 5

7 13 4 4 11 7 14 6

8 5 5 9 2 6 9 9

Table 12.15 ACTIVITY PREDECESSORS TIME (WEEKS) PEOPLE

I — 6 6

II — 4 3

III — 2 3

IV III 2 3

V III 2 3

VI V 8 5

VII VI 1 3

VIII I, II, IV, VII 4 4

Table 12.16 TO JOB

1 2 3 4

0 50 29 35 42

FROM JOB 1 15 54 36

2 36 24 42

3 34 27 37

4 48 55 58



12-22. An electronic manufacturing firm assembles security alarms for the home security market. They
manufacture three systems—the Guard Dog, the Home Guard, and the top-of-the-line Terminator
III. Assembly of the Guard Dog takes 1.5 hours per unit. The Home Guard requires 2 hours to assem-
ble and the Terminator III requires 2.5 hours for assembly. The total available hours of production are
240. The profit contribution of the Guard Dog is $320, the Home Guard is $320, and the Terminator
III contributes $350 to the firm’s profits. The sales force has predicted next week’s sales to be 60 units
of each product. Management has specified several goals that are equally important to the firm:
1. Produce 60 of each product.
2. Use all available assembly hours.
3. Generate at least $3,600 in profit.
Formulate and solve the goal-programming problem.

12-23. The marketing manager of a new steak house in Odessa, Texas, has determined that an advertising
campaign is needed to boost sales. The owner of the steakhouse and the marketing manager has
determined that a budget of $75,000 would be the maximum that could be spent to raise the revenue
of the restaurant. Permian Eats is a local restaurant magazine that would be ideal for advertising the
steak house. Permian Eats will sell a full-page ad for $1,000 and the ad exposure is estimated to be
60,000. KOIL, the local TV station, will sell a 30-second advertisement for $6,000 and each ad is esti-
mated to get 600,000 exposures. The manager would like to run at least five TV ads and ten magazine
ads. He also would like to spend less than his budget to ensure funds will be available for other alter-
natives if the ad campaign does not produce the intended results. He has the following goals:
1. Exposures of at least 35,000,000.
2. Spend less than $60,000.
(a) Create a spreadsheet model to meet the goals.
(b) Discuss the results.

12-24. Gert’s Sports Emporium is a rapidly growing sporting goods retailer on the East Coast. Bob, the
owner of Gert’s, has acquired a sizable amount of capital to open new stores in the Chicago area. He
can build three types of stores. Superstores (SS) cost $3.5 million to build and employ 150 people.
Mall outlet (MO) stores cost $1.7 million and employ 65 people, and an Internet store (IS) would
cost Gert’s $1 million and would employ 50 people. Gert’s has $10 million in capital to invest in the
stores but also has multiple goals to meet with the capital investment. Gert’s would like to maximize
return on investment as well as maximize the number of employees. The expected returns for a
superstore, a mall outlet, and an Internet store are $1 million, $500,000, and $1 million, respectively.
The number of each type of store is limited by the demographics of the region. The maximum num-
ber of Internet stores is one, the maximum number of superstores is three, and mall outlet stores are
limited to seven. Evaluate the situation using AHP. Assume there are two criteria, Return and
Employees. Bob has rated both criteria using the scale presented in the text. The results are given in
Tables 12.17 and 12.18.
(a) Using these ratings, find the best decisions for store mix according to the AHP algorithm.
(b) Evaluate Bob’s consistency in rating the alternatives.
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Table 12.17 RETURN

SS MO IS

SS 1 4 7

MO 0.25 1 5

IS 0.142857 0.2 1

Table 12.18 EMPLOYEES

SS MO IS

SS 1 0.25 0.333333

MO 4 1 0.5

IS 3 2 1



12-25. Three alternatives are available for the purchase of financial services for Gert’s inventory expansion to
support new stores in the Chicago area (see Problem 12-24). The suppliers all have different advan-
tages in credit terms and customer service. Bob has rated both criteria (see Tables 12.19 and 12.20).

Use AHP to determine the sole source of financial services for Gert’s.
12-26. Bob, the owner of Gert’s Sports Emporium (see Problem 12-24), is looking for suppliers of hockey

equipment. He is expecting a large jump in sales due to unexpectedly cold winter conditions. He has
determined that the decision for a supplier will be based on the ability to provide on-time delivery.
He has four suppliers from which to choose and he has developed the ratings shown in Table 12.21.
(a) Use AHP to pick the two best suppliers.
(b) Is Bob consistent with his ratings?
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Table 12.21 PUCK’S GOAL 
STICKS SUPPLY HOUSE RINKS INC. TENDERS

Sticks Supply 1 3 1 0.5

Puck’s House 0.333333333 1 0.5 0.25

Rinks Inc. 1 2 1 1

Goal Tenders 2 4 1 1

Table 12.19 CREDIT TERMS

Big Bank Little Bank Bucks R Us

Big Bank 1 2 0.143

Little Bank 0.5 1 6.000

Bucks R Us 7 0.167 1

Table 12.20 CUSTOMER SERVICE

Big Bank Little Bank Bucks R Us

Big Bank 1 0.25 1

Little Bank 4 1 0.5

Bucks R Us 1 2 1

Application Problems

12-27. Given the job-scheduling exercise in Problem 12-15, can you see any improvement when you apply
the following heuristic method?

Step 1: List the jobs along with their processing times on the cutting and grinding machines.
Step 2: Find the job with the smallest processing time. If the smallest time is on the cutting

machine, schedule the job as early as possible; if it is on the grinding machine, schedule
it as late as possible. Break ties arbitrarily.

Step 3: Eliminate the job from the list.
Step 4: Repeat steps 2 and 3 until all jobs have been scheduled.

12-28. The city of Chicago is considering two projects. Each unit of Project A costs $400, generates 20 jobs,
and returns $200 at the end of the year. Each unit of Project B costs $600, generates 40 jobs, and
returns $200. The city planner would like to achieve the following goals:
1. Keep total expenditure at or below $2400.
2. Generate at least 120 jobs.
3. Maximize return at end of year.
Suppose that the three goals are in order of descending absolute priority.
(a) Use graphical analysis to find the optimal number of units to engage in each project.
(b) Are the goals achieved? If not, what are the underachievements?
(c) What are the net expenditure and the number of jobs generated?
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FIGURE 12.32

FIGURE 12.33

12-29. Another heuristic for solving Problem 12-14 is called the greedy close. In this case we start with all
warehouses open and close the one that saves the most money. We continue to do this until we can-
not close a warehouse without losing money.
(a) Solve Problem 12-14 using the greedy close heuristic.
(b) Is this solution better or worse than that in Problem 12-14?

12-30. Use AHP to help Marlene Wyatt pick her first job out of college. She has three offers of employment
(one in Bakersfield, California; one in Fresno, California; and one in Oildale, California) and has
determined that there are three criteria (salary, stability of job, quality of town) that are important to
her. See JOB.XLS on your student disk, which contains the following data shown in Figure 12.32.
(a) What are the average ratings for the “Salary” criterion?
(b) Is Marlene consistent? How might you change the comparisons so that she is consistent?
(c) What are the average weights for each of the criterion?
(d) Which job would you recommend that Marlene take?

12-31. Use AHP to help Charles Shumway pick his brand-new automobile. He has narrowed it down to
three choices (Buick Regal, Toyota Camry, and Honda Accord) and has determined that there are
three criteria (price, Consumer Reports’ rating on reliability, speed/performance) that are important
to him. See CAR.XLS on your student disk with the following data shown in Figure 12.33.
(a) What are the average ratings for the “Speed” criterion?
(b) What are the average weights for each criterion?
(c) Is Charles consistent with his weights?
(d) Which car would you recommend that Charles buy?

12-32. Suppose that you have been hired by the city council of Peoria, Illinois, to help them meet their over-
all tax goals. They have three goals (listed in order of descending priority):
1. Limit the tax burden on Lower Income (LI) people to $1.75 billion.
2. Keep the property tax rate under 1%.
3. Minimize the “flight to the suburbs” by keeping the tax burden on Middle Income (MI) people

less than $2.5 billion and keeping the tax burden on High Income (HI) people to less than $1.25
billion.

4. Try to eliminate the food and drug sales tax if possible.
The city currently levies five types of taxes: (a) property taxes (where p is the tax rate), (b) sales

tax on general items except food and drugs and durable goods (where s is the general sales tax rate),
(c) sales tax on food and drugs (f is the sales tax rate on food and drugs), (d) sales tax on durable
goods (d is the sales tax rate on durable goods), and (e) gasoline tax (g is the gasoline tax rate).

Relevant information on the revenue generated by a 1% tax is provided in Figure 12.34 (and in
the workbook PEORIA.XLS) for each type of tax by category of income people (e.g., LI, MI, or HI).
Assume that 10% of the LI people will move out of the city into the suburbs if their tax burden
exceeds $1.75 billion, 20% of the MI people will move out of the city into the suburbs if their tax bur-
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FIGURE 12.34

Table 12.22 ACTIVITY TIME (WEEKS) PEOPLE

Tree 3 6

Father 2 3

Mother 1 3

Rope Ladder 1 3

Floor 2 6

Boy 4 5

Tire Swing 2 3

den exceeds $2.5 billion, and 30% of the HI people will move out of the city into the suburbs if their
tax burden exceeds $1.25 billion. You must work within the following “hard” constraints:
• The sales tax rate must be between 1% and 3%, as indicated in the Application Capsule.
• The total revenue raised must exceed the current level of $6.0 billion.
• The tax burden on the HI people can’t exceed $1.5 billion.
• The tax burden on the MI people can’t exceed $3.0 billion.
(a) Use goal programming to formulate this model.
(b) Which goals can you meet? 
(c) What about the ones you can’t?

12-33. The Art Institute of Chicago is having a sculptor design and build a large, 80-foot tall, stainless steel
sculpture within the building. Because the ventilation is inadequate for engine-driven welding
machines, the workers must use large electrically driven welders that are supplied by the building’s elec-
trical circuits. Each welder requires 100KW of power and is operated by one person. The sculptor has
identified the structural parts of the sculpture that must be completed in the specified order for safety
purposes. The sculpture depicts a mother and father watching their son building a tree house. The tree
supports a rope ladder, a tire swing, and the tree house floor with the boy standing on the tree house
floor. The mother, father, and tree can all be simultaneously welded. After the tree is completed, then
both the tire swing and the rope ladder can be added as well as the tree house floor. When the tree house
floor has been successfully welded into the tree, then the boy can be welded to the floor. The number of
welders required and the time required for each part of this sculpture are given in Table 12.22.

The Art Institute is limited in the amount of electricity that can be supplied to the crew by a con-
tract with the electric utility. No more than 900KW can be supplied to the project at any time. The
project must be completed in nine weeks to ensure that the sculpture is ready for the Picasso festival.

Use the workload smoothing heuristic to ensure that the project can be completed without
exceeding the electrical capacity of the Art Institute.

12-34. Use the data from Problem 12-21. Is there a better solution for minimizing the setup time at Stamped
Metal Parts?

12-35. Use the data from Problem 12-24 (Gert’s Sports Emporium).
(a) Use linear programming to determine the store mix that has the maximum return.
(b) Determine the store mix that employs the most people.
(c) Modify the linear program to minimize underachievement of both goals equally.

12-36. A refinery makes diesel, gasoline, and asphalt. The profit contribution for diesel is $3 per barrel. The
contribution for gasoline is $2.50 per barrel, and the contribution for asphalt is $3.50 per barrel. The
refinery wants to maximize profit, but must also maintain a safe work place. Past experience has
shown that the production of asphalt has a “lost work” accident twice as often as the production of
diesel or gasoline. The accident rate for the production of asphalt is 0.2 accidents per million barrels
produced. The refinery is limited to 10 million barrels of product next month. Five million barrels of
gasoline must be produced for an important customer.

Formulate the goal-programming problem to minimize underachievement of both the profit
and safety goals equally.
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W. Carl Lerhos, special assistant to the president of Sleepmore
Mattress Manufacturing, had been asked to study the pro-
posed consolidation of plants in three different locations. The
company had just added several new facilities as a result of the
acquisition of a competitor; some were in markets currently
served by existing facilities. The president knew the dollar sav-
ings would be fairly easy to calculate for each location, but the
qualitative factors and the trade-offs among them were more
difficult to judge. This was the area in which he wanted Carl to
spend most of his time.

The major objectives in evaluating a consolidation plan
for the sites were to maximize manufacturing benefits, maxi-
mize sales benefits, and maximize direct financial benefits.
These objectives would be composed of exploiting 13 attrib-
utes (see Exhibit 1). After spending some time looking at each
attribute individually, Carl and the other officers of Sleepmore
ranked them in order of most important to least important.
They also added the best and worst possible outcomes for each
attribute (see Exhibit 2).

Measurements
In each case, the attributes were assigned a number from 0 to 10,
with 10 being the best possible outcome mentioned in Exhibit
2. Each location was in a different region, and each of the three
locations involved a decision between two alternatives—consol-
idate the plants there or keep them separate. The plants pro-
duced different product lines. Exhibits 3 to 5 give brief descrip-
tions and scores of the three potential consolidation
opportunities. Only the “consolidate” alternatives are scored; in
other words, each “keep separate” alternative has a default score
of 5 for each attribute. Therefore, the attributes are really scored
relative to the current situation, in which the plants are separate.
The scores Carl assigned were based on subjective assessments
after talking with the managers and visiting the sites.

Weights
After Carl had scored each attribute on his scale of 0 to 10, he
faced the more difficult task of deciding how important one
attribute was compared with another. The quantitative attrib-
utes would be fairly easy to weigh. He knew that the company’s
discount rate (15%), along with its planning horizon (10
years), might help in this regard, but he was not quite sure how.

He had heard the president say, “The smaller a plant, the
easier it is to manage. If we could improve from a $35 million
plant size to a $15 million plant, the gain would be equivalent
to a savings from the status quo of $1 million a year in operat-

ing costs.” Carl made a quick mental calculation that suggested
the weight for plant size would be one-half the weight for
annual savings—he’d have to check it later though.

The mattress-manufacturing industry required a lot of
space. If a consolidation required a new plant or a significant
addition, the hassle of moving, as well as hidden expenses,
would be additional negative factors. The cost would be
$25/sq ft for each additional sq ft of space.

To help him in assigning weights to the other, more qual-
itative attributes, Carl pulled out his notes from a meeting
attended by the president, the vice president of operations,
and the vice president of human resources. At this meeting,
held at the time of the acquisition, the list shown in Exhibit 2
had been generated and the relative importance of each
attribute had been discussed.

The vice president of human resources had said, “Labor
is the most important, because the quality of labor determines
the major aspects of plant performance (like quality, prof-
itability, etc.). Experience has shown that a good labor force
can overcome many obstacles, but a poor labor force leads to
trouble. In fact, I think labor is twice as important as the aver-
age of all 13 attributes.” Carl wondered about the context for
this statement. He verified that the vice president had the
ranges of Exhibit 2 in mind: Improving labor relations from
“create hostile union” to “eliminate hostile union” was twice as
valuable as improving the average attribute from worst to best.

The vice president of operations agreed with the com-
ment about labor and said, “I think quality and service,
although slightly less important than labor, are two other
attributes that deserve more weight than average.”

Case Study Sleepmore Mattress Manufacturing: Plant Consolidation1

1 This case is to be used as the basis for class discussion rather
than to illustrate either the effective or ineffective handling of an
administrative situation. © 1990, Darden Graduate Business
School Foundation. Preview Darden case abstracts on the World
Wide Web at www.darden.virginia.edu/publishing.

EXHIBIT 1 Hierarchy of Objectives

I. Maximize Manufacturing Benefits
A. Labor
B. Management effectiveness

1. Talent availability
2. Plant size

C. Operability
1. Product-line complexity
2. Training
3. Production stability

D. Facilities
1. Layout
2. Location
3. Space availability

II. Maximize Sales Benefits
A. Maximize service
B. Maximize quality

III. Maximize Direct Financial Benefits
A. Minimize initial cost
B. Maximize ongoing benefit
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EXHIBIT 2 Thirteen Attributes Selected for Evaluation of Consolidation

RANK ATTRIBUTE WORST OUTCOME BEST OUTCOME

1 Labor Create hostile union Eliminate hostile union
2 Quality Drastically worsen quality Strongly improve quality
3 Service Lose business Increase business
4 Annual savings Lose $1 million/yr Save $1 million/yr
5 Initial cost Cost $5 million Save $5 million
6 Management talent Severely worsen management Strongly improve management
7 Plant size (sales) Create $35 million plant Create $15 million plant
8 Plant location Move from rural area to city Move from city to rural area
9 Product-line complexity Increased to full product line Reduce product line

10 Space availability Need a new facility (100,000 sq ft) Save an expansion of 100,000 sq ft
11 Production stability Increase demand variability Decrease variability
12 Training Train all new labor Small layoff—no new training
13 Plant layout Create poor layout Eliminate poor layout

EXHIBIT 3 Consolidation Evaluated at Site 1: Merge Plant 1A into Plant 1B

ATTRIBUTE PLANT 1A PLANT 1B SCORE FOR COMBINING

Labor Poor Excellent 9; large improvement
Quality Poor Good 9
Service Poor Good 8
Annual savings High overhead Efficient; merger saves $1 MM/yr —
Initial cost Save $1MM if plant merged N/A —
Management talent Poor Excellent 9
Plant size (sales) $3 million $27 million —
Plant location Large city Rural area 10
Product-line complexity 2 major product lines 2 separate lines 0; very complex
Space availability N/A Has extra space; needs 0 new sq ft —
Production stability Small demand/ high uncertainty Large demand/low uncertainty 7; reduce variation
Training N/A Extra labor available 7.5
Plant layout Congested plant Well laid out 7.5

EXHIBIT 4 Consolidation Evaluated at Site 2: Put Plant 2B into Plant 2A

ATTRIBUTE PLANT 2A PLANT 2B SCORE FOR COMBINING

Labor Average Poor 6
Quality Average Average 5
Service Average Good 7
Annual savings Undercapacity; merger saves $500K Undercapacity —
Initial cost N/A Save $1MM if merge plant —
Management talent Average Good 6
Plant size (sales) $5 million $10 million —
Plant location Industrial park Large city 6
Product-line complexity 2 major product lines 2 different lines 0; very complex
Space availability Need to add 50K sq ft if merge No room —
Production stability Small demand/high uncertainty Countercyclical demand 9; reduce variation
Training Underutilized labor Underutilized labor 9; small layoff
Plant layout Excellent Poor 9
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There seemed to be a consensus that management was
the next most important qualitative attribute because, like
labor, management would determine the fate of the plant.
Unlike labor, however, management could be rather easily
changed. Overall, this attribute was considered “average” in
terms of importance.

The president then argued for consideration of plant
location: “Plant location is as important as plant size. Our data
show that plants in more congested areas (cities) tend to be
less profitable than plants in rural areas.”

The vice president of operations said, “Because
Sleepmore produces a different product line in different
plants, consolidations could drastically increase complexity
and reduce long-term efficiency. I move that product-line
complexity be considered the next most important qualitative
attribute, albeit its importance is about two-thirds the impor-
tance of management talent, in my opinion.”

The remaining three attributes—stability, training, and
layout—were agreed to have individual effects that were rela-
tively small, but their combined effect was considered about
twice that of product-line complexity.

The hardest task was to evaluate the trade-offs that man-
agement would be willing to make between quantitative and
qualitative factors. In this regard, the president had expressed
difficulty to Carl in choosing between a situation with initial
cost savings of $7 million and a situation where a hostile
union was eliminated.

Decision
Carl had to figure out an effective way to combine all this
information about both quantitative and qualitative factors to
make decisions whether to consolidate at each of the three
sites. He wondered how sensitive his decisions would be to the
weights he assigned each attribute.

EXHIBIT 5 Consolidation Evaluated at Site 3: Put Plant 3B into Plant 3A

ATTRIBUTE PLANT A PLANT B SCORE FOR COMBINING

Labor Below average Good 3; may lose Plant 3A labor
Quality Average Average 5
Service Average Good 6
Annual savings Undercapacity; merger saves $200K/yr Efficient —
Initial cost N/A Save $2MM if merge —
Management talent Average Below average 6
Plant size (sales) $9 million $18 million —
Plant location Large city Suburb 4
Product-line complexity 2 major product lines 2 different lines 0; very complex
Space availability Need 30K sq ft if merge No room —
Production stability Small demand/ high uncertainty Uncertain demand 6; demand not countercyclical
Training Underutilized labor N/A 3; some labor quits
Plant layout Good Cramped 7
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