
Homework 6.

Practice:

Read: https://www.tutorialspoint.com/csharp/csharp_inheritance.htm,

https://www.tutorialspoint.com/csharp/csharp_polymorphism.htm

https://csharp-station.com/Tutorial/CSharp/Lesson08

Read chapter 7 from the book „Beginning C# object oriented programming“. You can find the book in

general section in ained.ttu.ee. If classes are not your strongest side, then read chapter 6 too.

Read this page and try out different examples: https://docs.microsoft.com/en-

us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-

keywords

Try updating the cars exercise by creating a new car type for family van which has as description „I have

6 seats“. Call it out in main method.

Watch: https://www.youtube.com/watch?v=EiBCF7rYRtI

https://www.youtube.com/watch?v=pFCeRlr34CE

NB! If we make properties that need to be used in base class we use keyword protected

This means that our properties are accessible in derived classes but not in main method.

https://www.tutorialspoint.com/csharp/csharp_inheritance.htm
https://www.tutorialspoint.com/csharp/csharp_polymorphism.htm
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://www.youtube.com/watch?v=EiBCF7rYRtI
https://www.youtube.com/watch?v=pFCeRlr34CE

Practice exercise: try it and then see the solution in ained.ttu.ee. Please try it first yourself. This

exercise uses many principles of OOP and is a good practice.

Create an interface for Animal with methods:

 void MakeSound(no parameters)

 void Jump(no parameters)

 void PrintInfo()

 void SetName(string name)

Create a class Animal where:

 MakeSound prints „animal is making sound“

 Jump prints: „animal (type) has jumped x times“ and count the times

o animal.Jump()- „Animal has jumped 1 times“

o animal.Jump()- „Animal has jumped 2 times“

 PrintInfo: prints animal type and name

 SetName: sets name for animal

Create a class Dog where:

 MakeSound prints „Dog is barking“

 Name can be max 8 letters long

Create a class Cat where:

 MakeSound prints „Cat is meowing“

 Name can be max 4 letters long

 Cat can jump 3 times. If cat jumps three times then cat stops jumping and „Cat is tired, must

sleep now.“ is printed.

Create a class Chiuaua where:

 MakeSound prints „Dog is barking“ and „with a really irritating voice“.

Homework task: do this and submit it!

Think this through! If you use good structure for classes then this exercise is very simple. If you use bad

class design then this task is very long and complicated.

You work in a company that creates irons (triikraud). There are multiple types of ironing machines:

 Regular

 Premium

 Linen

All ironing machines have to have these methods (create an interface and implement it):

 Descale

 DoIroning

 UseSteam

 TurnOn

 TurnOff

Properties for the machine:

 There are differnt programs (temperature ranges) for different fabrics:

200°C -230 °C : Linen program

150°C -199 °C : Cotton program

120°C -149 °C : Silk program

90°C -119 °C : Synthetics program

Linen machine can do all of the programs; premium and regular machine cannot do linen program (their

possible highest temperature is 199).

 For all machines there are two DoIroning methods:

o Method which takes temperature as parameter and prints out the machine type and the

program that is used (example: „DoIroning(170)“ - > „Premium machine is ironing with

Cotton program“.)

o Method which takes the program name as parameter and prints out the machine type

and a random range from within the program temperature range (example:

„DoIroning(„Cotton“)“ - > „Regular machine is ironing with 154 degrees.“)

 All machines need to be cleaned after they have been used for 3 times (after 3 times executing

the „DoIroning“ method).

o Regular and linen machines have to be cleaned manually (Descale method has to be

called in main class). There should be a notification that „Machine has been used 3

times and needs cleaning“. You cannot use DoIroning method before the machine is

cleaned.

o Premium machine cleans itself (You do not need to call out Descale method from main

class, it is called from within the DoIron method but ONLY when neccessary, ie its been

used 3 times for ironing)

 Descale method sets the usage counter to 0 and prints „Machine is cleaned“.

 There is an option to use steam while ironing. Using steam only works for one ironing cycle.

Example:

 myIron.UseSteam();
 myIron.DoIroning(); //irons with steam, then turns off the steam

 myIron.DoIroning(); //irons without the steam

 Steam can be used only if the program temperature is at least 120 degrees. With linen program

the steam should be always turned on automatically. If steam is used, the info should be printed

out in DoIroning method (additional text „Ironing with steam“). If steam is not used, no info

should be printed.

 If UseSteam is called out 2 times in a row the second time should print „Steam is already on“.

 Premium machine has a indicator light for letting the user know when you need to add water to

the machine. If steam is used 2 times, the light goes on. Create a property that indicates if the

light is on or off and if it is turned on then notify the user. Method for turning off the light is not

neccessary.

 DoIron methods can only be called out with correct parameter values. If fase values are used,

there should be a notification and ironing shuld not happen. Example:

o DoIron(300) -> „Invalid temperature range for ironing“

o DoIron(„underwear“) -> „We do not have a program for ironing underwear“

 In main method create different objects and call out the methods and try different scenarios.

Tips:

 DO NOT create duplicated code. Base code comes from the base class. In derived classes there

should be ONLY custom logic.

 Think of which class should be the base class. Base class carries the methods and properties that

are common to all classes.

 Think of all the properties that are needed.

 Start by creating base class. Then create derived classes.

 To understand when the iron needs cleaning we need to keep track of all the times when DoIroning

methods were called out. Best option is to use a counter inside the iron class (do not do this in

main method!).

 For all machines there should be also info about machine types (regular, premium, linen). Maybe it

is good to set these values in constructors?

 Constructors are not specified in the task, you can use them according to your needs.

 Keyword for making properties in base class available to derived classes is „protected“

 Keywords for overwriting the methods are „virtual“ and „override“ (only virtual methods in base

class can be overwritten in dervied class). Make only those methods virtual that have to be

overwritten!

 Think which methods should be called out from within other methods and which ones from the

main class.

 Check https://msdn.microsoft.com/en-us/library/2dx6wyd4(v=vs.110).aspx method for generating

the temp value. Are upper and lower values included in the generated random number?

https://msdn.microsoft.com/en-us/library/2dx6wyd4(v=vs.110).aspx

