Тепловые расходомеры

Принцип действия тепловых расходомеров основан на нагреве потока вещества и измерении разности температур до и после нагревателя (калориметрические расходомеры) или на измерении температуры нагретого тела, помещённого в поток (термоанемометрические расходомеры). Последние не имеют самостоятельного применения в технологических измерениях. Поэтому ниже будем рассматривать калориметрические расходомеры.

Принцип действия таких расходомеров основан на нагреве потока жидкости или газа источником энергии, создающим в потоке разность температур, зависящую от скорости потока и расхода теплоты в нагревателе. Если пренебречь теплом, отдаваемым потоком через стенки трубопровода в окружающую среду, то уравнение теплового баланса между расходом тепла, потребляемым нагревателем, и теплом, сообщенным потоку, принимает вид:

$$q_t = kQ_u c_u \Delta t, \tag{1}$$

где k — поправочный множитель на неравномерность распределения температур по сечению трубопровода; c_p — теплоёмкость (для газа при постоянном давлении) при температуре $t = (t_1 + t_2)/2$; Δt — разность температур до и после нагревателя.

Тепло к потоку в калориметрических расходомерах подводится обычно электронагревателями, для которых:

$$q_i = 0.24I^2R,$$
 (2)

где I — сила тока; R — сопротивление нагревателя.

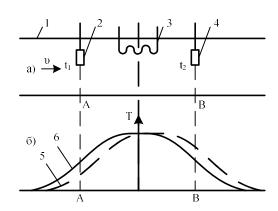
На основании (1) и (2) получим уравнение массового расхода:

$$Q_{\scriptscriptstyle M} = \frac{0.24I^2R}{kc_{\scriptscriptstyle p}\Delta t}.\tag{3}$$

Возможны и существуют два способа измерения массового расхода в соответствии с выражением (3):

- 1) расход определяют по значению мощности, потребляемой нагревателем, который обеспечивает постоянную разность температур Δt ;
- 2) расход определяют по разности температур Δt при постоянной мощности, подводимой к нагревателю.

В соответствии с первым способом расходомер работает как регулятор температуры нагрева потока. При изменении Δt автоматически изменяется мощность нагрева q_t до тех пор, пока Δt не достигнет заданного значения. Обычно, для уменьшения расходуемой мощности


заданное значение Δt ограничивают в пределах 1-3°C. Массовый расход при этом определяется по шкале ваттметра в цепи нагревателя.

По второму способу, когда к нагревателю подводится постоянная мощность, расход определяют по прибору, измеряющему разность температур. Недостатком данного метода является гиперболический характер градуировочной зависимости, а значит и падение чувствительности с увеличением расхода.

На рис. 1 показана схема калориметрического расходомера и кривые распределения температур до и после нагревателя.

В трубопроводе установлен нагреватель потока, на равных расстояниях от центра нагревателя — термопреобразователи (нагрев их от лучеиспускания одинаков), измеряющие температуру t_1 потока до и после нагрева t_2 .

Кривые распределения температуры среды до и после нагревателя при его постоянной выделяемой мощности приведены на рис.5.9, δ . Для неподвижной среды распределение температуры в ней симметрично относительно оси нагревателя – кривая 1 и поэтому разность температур $\Delta t = t_1 - t_2 = 0$. При некоторой малой скорости потока распределение температуры несимметрично и несколько смещается вправо – кривая 2. В сечении А-А температура t_1 падает вследствие поступления холодного вещества, а в сечении В-В температура t_2 или несколько возрастает, или же не меняется, вследствие чего при малых расходах Δt увеличивается с ростом расхода. С дальнейшим увеличением расхода при постоянной мощности нагревателя t_2 станет убывать, в то время как t_1 практически постоянная, т.е. будет уменьшаться Δt . Таким образом, при больших расходах разность температур Δt обратно пропорциональна расходу.

1 — трубопровод; 2 и 4 — термопреобразователи до и после нагревателя; 3 — нагреватель потока; 5 — кривая распределения температуры для неподвижной среды; 6 — кривая распределения температуры для малой скорости потока Рис.1. Калориметрический расходомер:

a — схема калориметрического расходомера; δ — кривые распределения температур до и после нагревателя

Следовательно, зависимость Δt от массового расхода имеет две ветви — восходящую при малых расходах и нисходящую — при больших. Обе эти ветви в определённых пределах измерения линейны, т.е. необходимо работать на одной из ветвей. Обычно работают на нисходящей, где Δt обратно пропорциональна $Q_{\scriptscriptstyle M}$.

В качестве преобразователей температуры могут быть использованы: термоэлектрические преобразователи, термометры сопротивления. Предпочтение отдаётся термометрам сопротивления так как их можно выполнить в виде равномерной сетки, перекрывающей всё сечение, и таким образом измерять среднюю по сечению температуру. Термометры сопротивления включаются в мостовую схему.

Калориметрические расходомеры обладают достаточно высокой точностью, оцениваемой (в условиях индивидуальной градуировки) приведённой погрешностью \pm (0,5 - 1) %, большим диапазоном измерений, малой инерционностью.

Данные приборы можно применять для измерения массового расхода, как жидкостей, так и газов, но в настоящее время их применяют, для определения расхода газа в трубопроводах малого диаметра.

Задание для расчета

Калориметрические расходомер состоит из нагревателя мощностью W, расположенный в трубопроводе диаметром D.

Требуется определить:

1. Разность температур измеряемой среды до и после нагревателя при средней скорости потока υ_{cp} (две скорости, получим две разности). Для расчета можно воспользоваться упрощенной формулой:

$$W = \Delta t \cdot c_p \cdot Q_M$$

где W – мощность нагревателя, Вт

с_р – теплоемкость измеряемой среды, Дж/(кг°С) [из таблицы 2]

 $Q_{\rm M}$ – массовый расход, кг/с $[Q_{\rm M} = Q_{\rm o} \cdot \rho = (\rho \pi d^2 \upsilon)/4]$

 υ – скорость потока, м/с

d – диаметр трубопровода, м

 ρ – плотность среды, кг/м³ [из таблицы 2]

2. Построить градуировочную характеристику (зависимость Δt от $Q_{\scriptscriptstyle M}$). Для этого заполнить таблицу:

No	Скорость υ, м/с	Объемный расход Q_0 , M^3/c	Массовый расход Q _м , кг/с	Разность температур ∆t, °C
1	υ_{cp1}			
15	Ucp2			

 υ_{cp1} и υ_{cp2} диапазон скорости по таблице 1 (по варианту). Весь диапазон разбить на равные отрезки, чтобы получилась 15 точек

- 3. Подобрать термопреобразователь для измерения разности температур (выбрать тип и построить его градуировочную характеристику)
- 4. Рассчитать разность температур для случая, когда измеряемой средой является вода. Определить целесообразность применения калориметрического расходомера в этом случае (ответ обосновать).

Таблица 1 – Варианты для расчета

№ варианта	W, BT	Измеряемая среда	υ _{ср,} км/ч	D, мм
1	260	Воздух	6,3-13	100
2	250	Кислород	10 - 15	100
3	240	Водород	1 - 10	100
4	230	Гелий	1 - 5	150
5	220	Азот	3 – 10	150
6	210	Воздух	8 - 15	150
7	200	Кислород	6,3 – 13	110
8	260	Водород	10 - 15	110
9	250	Гелий	1 - 10	110
10	240	Азот	1 - 5	140
11	230	Воздух	3 – 10	140
12	220	Кислород	8 - 15	140
13	210	Водород	6,3 – 13	120
14	200	Гелий	10 - 15	120
15	190	Азот	1 - 10	120
16	180	Воздух	1 – 5	150
17	170	Кислород	3 – 10	150
18	160	Водород	8 - 15	150
19	150	Гелий	6,3 – 13	160
20	140	Азот	10 - 15	130

Таблица 2 – Справочные данные

Измеряемая среда	Плотность, кг/м ³	Теплоемкость, 10-3 Дж/кг-К
Воздух	1,293	1,009
Кислород	1,429	0,917
Водород	0,090	14,27
Гелий	0,178	5,238
Азот	1,251	1,038
Вода	1000	4,19