
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319423724

An Android-based MESI Cache Coherence Simulator

Conference Paper · June 2017

DOI: 10.18638/scieconf.2017.5.1.422

CITATIONS

0
READS

88

2 authors, including:

Some of the authors of this publication are also working on these related projects:

MESI cache coherence simulator View project

Dimitris Kehagias

University of West Attica

20 PUBLICATIONS 26 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dimitris Kehagias on 01 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/319423724_An_Android-based_MESI_Cache_Coherence_Simulator?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319423724_An_Android-based_MESI_Cache_Coherence_Simulator?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MESI-cache-coherence-simulator?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Kehagias?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Kehagias?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_West_Attica?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Kehagias?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Kehagias?enrichId=rgreq-e9bf6fcacf7b5b96345c0c470d8d6f7d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQyMzcyNDtBUzo1MzM4MTE1MjkyOTM4MjRAMTUwNDI4MTk5NDQxNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Android-based MESI Cache Coherence Simulator

Dimitris Kehagias

Department of Informatics

TEI of Athens

Athens, Greece

Ioannis Raptis

Department of Informatics

TEI of Athens

Athens, Greece

Abstract—In multi-processor systems data can reside in multiple

levels of cache, as well as in main memory. The problem of

keeping the data consistent among all caches and memory is

known as the cache coherence problem. There are different

protocols to solve this problem. The MESI (Modified-Exclusive-

Shared-Invalid) cache coherence protocol is one of them. In this

paper, an Android-based educational MESI cache coherence

simulator is presented that shows with animation how the MESI

protocol works. This work is a continuation of our previous

desktop implementation of a MESI cache coherence simulator. It

is targeted to be used for teaching and learning the cache

memory coherence in advanced computer architecture courses.

The simulator enables interactive communication with students

and is implemented in Unity Engine and Visual Studio IDE using

scripts in C#.

Keywords- MESI, Coherence protocol, Simulator, Computer

architecture, Interactive animation

I. INTRODUCTION AND MOTIVATION

This paper complements our previous work in the
development of a MESI cache coherence simulator [1] by
presenting an Android version of the simulator. In [1], we
presented the implementation of a desktop-based MESI cache
coherence simulator. The Android version of the simulator will
enable students to comprehend the principle of cache
coherence anytime, anywhere.

In multiprocessor architectures caching plays a very
important role and it is actually the key to the performance of
the processor [8, 12]. However, cached architectures introduce
the problem of cache coherence. The cache coherence problem
arises from the possibility that more than one cache of the
architecture may maintain a copy of the same memory block.
The protocols to maintain coherence are called cache
coherence protocols. There are two classes of cache coherence
protocols in use: Snooping and directory based. Directory
based protocols employ a directory where information about
each block of physical memory is stored. This way the
directory has full control over which core has loaded which
cache block. In snooping based protocols, rather than keeping
the information about each block in a single directory, every
cache that has a copy of the data from a block of physical
memory could track the sharing status of the block.

Snooping protocols because of simplicity and low overhead
are most commonly used in commercial multiprocessors. The
bus that connects cores, caches and shared memory constitutes
a convenient broadcast medium to implement the snooping
protocols. One of the most commonly used types of snooping
protocols is the MESI cache coherence protocol.

For students in an undergraduate advanced computer
architecture course, cache coherence protocols are often
confusing as they are not always that distinct. That‟s why cache
coherence simulation tools are used to support learning [14, 15,
16].

Our intention to build a MESI simulator was motivated by
the fact that many students, in the undergraduate advanced
computer architecture course offered by the Informatics
department of the Technological Educational Institute (T.E.I.)
of Athens, exhibit difficulties understanding the cache
coherency problem.

Although there are already similar tools created to simulate
the MESI protocol [2, 5, 11, 13], our aim was to develop a
simulator which on one hand can easily be used by the
instructor to effectively teach concepts related to the internal
functions of the MESI protocol and on the other hand to
provide an attractive and easily understandable tool for the
students to assimilate these concepts. The major driving force
was to introduce animation to aid the students to really
understand the inner workings of the MESI protocol. The
simulator supports:

 Interaction with the user for configuring the blocks in
memory.

 Animation during a read or a write (hit or miss) in a
cache line.

 Written explanations in every animation step.

 Twelve ready scenarios that implement all the
functioning of the MESI protocol.

 Simulated execution to proceed in variable-speed
timed mode with interactive display update speed
adjustment.

The rest of the paper is organized as follows. Section II
explains the MESI protocol. Section III presents an overview
of simulator implementation, its functioning and features.
Section IV concludes the paper and discusses possible future
work.

II. MESI COHERENCE PROTOCOL

The MESI protocol (known also as Illinois protocol due to
its development at the University of Illinois at Urbana-
Champaign [6]) is a widely used cache coherence protocol. It is
the most common protocol which supports write-back cache
where a cache line can be written multiple times before the
memory is updated. It is based on the four states that a cache

The 5th International Virtual Conference on Advanced Scientific Results
June, 26. - 30. 2017, www.scieconf.com

Computer architecture eISSN: 1339-9071, cdISSN: 1339-3561
10.18638/scieconf.2017.5.1.422 - 194 - ISBN: 978-80-554-1337-2

https://crossmark.crossref.org/dialog/?doi=10.18638/scieconf.2017.5.1.422&domain=www.scieconf.com&date_stamp=2017-July-31

line can be. These four states are the abbreviations for MESI:
Modified, Exclusive, Shared and Invalid [9, 10].

Modified (M): The value of the cache line has been
modified and is different from the copy located in memory. A
write back must be performed in future, before permitting any
other read of the memory.

Exclusive (E): The cache line is present only in the current
local cache and is the same with the copy located in memory. It
may be changed to Share at any time, in response to a read
request. It may also be changed to Modified state when writing
to it.

Shared (S): The cache line may be replicated in more than
one cache and is the same with the copy located in memory.

Invalid (I): The value of the cache line is not valid, so it
should not be used.

The state diagram in Fig. 1 shows the possible state
transitions of a cache line. Here are some explanations. When
the block is first read by a core, if a valid copy exists in another
cache (condition PrRd/BusRd(S), in Fig. 1), then it enters the
core‟s cache in shared state. However, if no other cache has a
copy at the time (condition (not s), in Fig. 1), it enters the cache
in exclusive state. Then if this block is written by the same core
(PrWr/-), it changes to modified state meaning that the block
which is in main memory is different to it. In a read request
from another cache for an exclusive block (BusRd/Flush)
causes a state transition from exclusive to shared. A write
request from another cache (BusRdX/Flush) causes the
invalidation of the block.

Figure 1. [4]: MESI state diagram.

III. THE MESI SIMULATOR

A. Functional Description

The operation of the simulator is described by examining
the events that take place in a local core. Events may be either
due to local core activity because of cache access (read
hit/miss, write hit/miss) or due to bus activity as a result of
snooping. Both kinds of activities are requests to a local cache
controller which takes the appropriate actions.

Bus transactions are all initiated by cache controllers
responding to requests from their associated cores. There are
three bus transactions „BusRd‟, „BusRdX‟ and „BusWB‟, post
by cache controllers. With the BusRd (Bus Read) transaction
the controller asks for a copy with no intent to modify it and
the data could come from memory or another cache, while with
the BusRdX (Bus Read-Exclusive) transaction asks for a copy
with intent to modify it. In the BusRdX transaction must
invalidate all other caches copies. With the BusWB
(Writeback) transaction the controller puts a copy on the bus
and the memory is updated.

Fig. 2 shows the activity diagram of the simulator in case of
a Read Hit/Miss.

Local Read Hit: In case of a local read, a core creates a
“PrRd” (processor read) request to a cache controller. If the
controller finds the requested word in local cache then the read
is handled as a “Read Hit”. This can happen when the cache
line containing the requested word is in one of the M, E or S
state. The word is read by the core with no state change in
cache line. (Fig. 2)

Local Read Miss: In a local read, when the controller
doesn‟t find the requested word in cache or the cache line that
contains the word is in state I then the read is handled as a
“Read Miss” where the cache controller posts the bus
transaction “BusRd” asking for a copy with no intent to modify
it. There may be the following cases:

(a) Only one cache contains the requested copy in state
E. Snooping cache puts the copy on the bus; the local core
caches the copy and both cache lines set to state S.

(b) There is no other copy in caches. The bus request
“BusRd” is intended to memory and the copy read from
memory to local cache, marked E.

(c) Several caches have the requested copy in state S.
One cache (arbitrarily) puts the copy on the bus; the local core
caches the copy, marked S, with other copies remaining in state
S.

(d) Only one cache contains the requested copy in state
M. Snooping cache puts the copy on the bus and the local core
caches the copy, tagged S. In addition, snooping cache posts
the bus transaction “BusWB”, writes back its copy to memory
and changes its copy from state M to S.

Figs 3 and 4 show the activity diagrams of the simulator in
case of a Write Hit/Miss.

Local Write Hit: In case of a local write, a core makes a
“PrWr” (processor write) request to a cache controller. If the
controller finds the requested word in local cache then the write

The 5th International Virtual Conference on Advanced Scientific Results
June, 26. - 30. 2017, www.scieconf.com

Computer architecture eISSN: 1339-9071, cdISSN: 1339-3561
10.18638/scieconf.2017.5.1.422 - 195 - ISBN: 978-80-554-1337-2

Figure 2. Activity diagram of the simulator in case of a Read Hit/Miss

is handled as a “Write Hit”. This can happen when the cache
line containing the requested word is in one of the M, E or S
state. If the cache line is in M state the local core just updates
its value with no state change, while in state E updates its value
with state change from E to M. When the cache line is in state

S the cache controller broadcasts invalidate on the bus, the
snooping cores with an S copy change state from S to I and the
local cache value is updated with state change from S to M.

The 5th International Virtual Conference on Advanced Scientific Results
June, 26. - 30. 2017, www.scieconf.com

Computer architecture eISSN: 1339-9071, cdISSN: 1339-3561
10.18638/scieconf.2017.5.1.422 - 196 - ISBN: 978-80-554-1337-2

Figure 3. Activity diagram of the simulator in case of a Write Hit

Figure 4. Activity diagram of the simulator in case of a Write Miss

Local Write Miss: In a local write, when the controller
does not find the requested word in cache or the cache line that
contains it is in state I then the write is handled as a “Write
Miss” where the cache controller posts the bus transaction
“BusRdX” asking for a copy with intent to modify it. There
may be the following cases:

(a) There is no other copy in caches. The bus request
“BusRdX” is intended to memory; the copy read from memory
to local cache, updated and marked M.

(b) Only one cache contains the requested copy in state E
or several caches have the requested copy in state S. The bus
request “BusRdX” is intended to memory; the copy read from
memory to local cache, updated and marked M. The snooping
cores see the “BusRdX” request and change their copy state
from E or S to I.

(c) Only one cache contains the requested copy in state
M. Because of “BusRdX” request, the snooping core posts the
“BusWB” request, writes back its copy to memory and changes
its copy state from M to I. The local controller re-issues
“BusRdX” request; the copy read from memory to local cache,
updated and marked M.

B. Overview of Simulator Implementation

The simulator was developed in Unity Engine Version
5.3.4f1 personal edition [3,7]. All scripts were written in C#
using Microsoft Visual Studio Community 2015. Unity Engine
was chosen because of the attractive GUI system that provides.

GameObject is the base class for all entities in Unity
scenes. MonoBehaviour is the base class every script derives
from. The following classes were used to develop the
simulator.

 Public class terminal: MonoBehaviour. This is the most
important class directly connected with READ and
WRITE buttons, it is the class which selects and triggers
the appropriate methods in accordance with the user
input.

 Public class busrd_c1: MonoBehaviour, public class
busrd_c2: MonoBehaviour, public class busrd_c3:
MonoBehaviour, public class busrd_m : MonoBehaviour.
These four classes include methods to illustrate the
various signals generated within the processor. Game
Objects of these classes are subject to movement using
the Box2D physics system that is integrated into the Unity
Engine.

 Public class credits: MonoBehaviour. GUI Buttons
handler: Open/Close the Info window.

 Public class dme: MonoBehaviour. GUI Buttons handler:
Open/Close the Scenario and Help windows. Triggers
Initialize. Scene change. Application quit.

 Public class glow: MonoBehaviour. Adds the flickering
line attribute to the selected blocks and lines.

 Public class init_msi_snoopy: MonoBehaviour. It bears
the Initialize and Random Words insertion method.

The 5th International Virtual Conference on Advanced Scientific Results
June, 26. - 30. 2017, www.scieconf.com

Computer architecture eISSN: 1339-9071, cdISSN: 1339-3561
10.18638/scieconf.2017.5.1.422 - 197 - ISBN: 978-80-554-1337-2

 Public class msi_snoopy_button: MonoBehaviour. GUI
Button‟s handler: Scene change from Main Menu to main
program screen.

 Public class scenario: MonoBehaviour. GUI Buttons
handler: Choose a scenario menu.

C. Simulator Features

Fig. 5 shows the graphical interface of the simulator whose
features include:

 Three cores with local caches. The caches are direct
mapped with a write back policy. The local cache of each
core has four cache lines (LN0-LN3) and the cache-
line/block size is four words. The column titled STATE
displays the current state (M, E, S, or I) of each cache line.
The simulator doesn‟t concern itself with byte addressing
within words, word alignment and so on. The simulator
accepts its input from users. A user specifies a word in the
“Enter Word….” frame and starts a read/write transaction
on the specified word by pressing the READ/WRITE
button. A word consists of a letter (A-Z) and a digit (0-9).
In order to start a read/write operation the contents of
memory must previously be set by pressing the RND
Words button. The words are set randomly.

 A main memory containing sixty four words organized as
sixteen memory blocks (BL0-BL15) with four words each.
Memory is addressed at block level and data addresses
start from zero. Thus, address zero indexes the first block

in memory, address one the second block, and so on.

 The local caches and the main memory are connected by a
bus that acts as a communication network.

 LOG info panel that shows which read or write request is
being executed.

 With the Initialize button the contents of all caches and
main memory are cleared, while with the RND Words
button the contents of memory are specified randomly.

 The simulator permits simulated execution to proceed in
variable-speed timed mode with interactive display update
speed adjustment using the frame Speed: (5 to 100). Speed
of 10, 50 and 100 correspond to 10, 2 and 1 second(s) per
step respectively.

 By selecting the Scenario button twelve ready case studies
are displayed that implement all the functioning parts of
the MESI protocol.

 Description of the main interface is given by selecting the
Help button.

 Main menu button returns to main menu.

IV. CONCLUSIONS AND FUTURE WORK

A tool to aid students and teachers in an undergraduate
advanced computer architecture course was presented. This
tool, an Android-based MESI simulator for a write-back cache,
implements the MESI snoopy cache coherence protocol. Each

Figure 5. Graphical Interface

The 5th International Virtual Conference on Advanced Scientific Results
June, 26. - 30. 2017, www.scieconf.com

Computer architecture eISSN: 1339-9071, cdISSN: 1339-3561
10.18638/scieconf.2017.5.1.422 - 198 - ISBN: 978-80-554-1337-2

step of the simulation is represented with animation and with
reference to a text area in order to give a clear picture of which
read or write request is being executed. Initial use of the
simulator has shown learning effectiveness. In near future the
simulator will be evaluated in the classroom through student
surveys. Lastly, both versions one for English language and
one for Greek language will be integrated into one version.

REFERENCES

[1] D. Kehagias and I. Raptis, “An Interactive MESI Cache Coherence
Simulator for Educational Purposes”, In the ACM Conference
Proceedings of the 20th Pan-Hellenic conference on Informatics (PCI
2016), Patra Greece, doi>10.1145/3003733.3003765, Nov. 10-12, 2016.

[2] Gomez-Luna, J., Herruzo, E. and Benavides, J. I., “MESI Cache
Coherence Simulator for Teaching Purposes”. CLEI ELECTRONIC
JOURNAL. 12, 1, 2009.

[3] Unity User Manual: http://docs.unity3d.com/Manual/index.html.

[4] https://en.wikipedia.org/wiki/MESI_protocol.

[5] Laguens, A. A., Mir, S.B. and Quintana Orti, E.S., “An Interactive
Animation for Learning How Cache Coherence Protocols Work”. In
proceedings of INTED2011 Conference, 7-9 March, 2011, Valencia
Spain.

[6] Papamarcos, M. S. and Patel, J. H., “A low-overhead coherence solution
for multiprocessors with private cache memories”. In ISCA '84:
Proceedings of the 11th annual international symposium on Computer
architecture, ACM , New York, NY, 348-354, 1984. DOI=
http://doi.acm.org/10.1145/800015.808204.

[7] Joe Hocking, “Unity in Action: Multiplatform Game Development in C#
with Unity 5”. Manning Publications, 2015.

[8] Hennessy J.L. and Patterson D.A., “Computer Architecture: A
Quantitative Approach”. Morgan Kaufmann Publishers Inc., Fifth
Edition.

[9] MESI Two Level. Available at http://www.m5sim.org/MESI Two Level,
Oct. 2016.

[10] The gem5 Simulator System, “A modular platform for computer system
architecture research”. Available at http://www.gem5.org, Oct. 2016.

[11] VivioJS - Interactive Reversible E-Learning Animations for the WWW.
Available at https://www.scss.tcd.ie/Jeremy.Jones/vivio/vivio.htm. Oct.
2016.

[12] Patterson, D., Hennessy, J., “Computer Organization and Design (5th
ed.)”, Morgan Kaufmann, 2014.

[13] Somdip Dey and Mamatha S. Nair, “Design and Implementation of a
Simple Cache Simulator in Java to Investigate MESI and MOESI
Coherency Protocols”. International Journal of Computer Applications,
Vol. 87, No. 11, pp. 6-13, 2014.

[14] A. Misev, M. Gusev, “Simulators for Courses in Advance Computer
Architecture”. International Journal of FACTA UNIVERSITATIS
(series: Electronics and Energetics), Vol.18, No.2, pp. 237-252, 2005.

[15] M. Gusev, A. Misev, and G. Popovski, “Simulation of superscalar
processor,” in proc. of ITI‟98, Pula, Croatia, pp. 169–174, 1998.

[16] A. Misev and M. Gusev, “Supersim v2.0 ilp processor visual simulator,”
in Computation Intelligence and Information Technologies, Proceedings,
R. Stankovi´c, Ed. Nis, Yugoslavia: Faculty of Electonic engineering,
June 20-21, 2001, pp. 161–166.

The 5th International Virtual Conference on Advanced Scientific Results
June, 26. - 30. 2017, www.scieconf.com

Computer architecture eISSN: 1339-9071, cdISSN: 1339-3561
10.18638/scieconf.2017.5.1.422 - 199 - ISBN: 978-80-554-1337-2

View publication statsView publication stats

https://www.researchgate.net/publication/319423724

