Лабораторная работа № 4. Численное решение краевой задачи для нестационарного одномерного уравнения теплопроводности методом контрольного объема.

Постановка задачи. Найти функцию u(x,t), удовлетворяющую уравнению

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + f(x,t), \ 0 < x < l, \ 0 < t < T \tag{1}$$

начальному условию

$$u(x,0) = \varphi(x), \ 0 < x < l$$
 (2)

и граничным условиям

$$\begin{cases} u(0,t) = \alpha(t) \\ u(l,t) = \beta(t) \end{cases}, \ 0 < t < T$$
 (3)

где $x \in [0, l], t \in [0, T], l = 1, T = 3, a = const > 0$.

Задание

Используя метод контрольного объема, найти решение смешанной задачи (1) - (3). Провести три расчета: 1) при n = 10, 2) при n = 100 и 3) при n = 1000.

Указание. Результаты расчетов вывести на печать с пятью значащими цифрами после запятой. Значения y_i^T численного решения y(x,t) и значения u_i^T аналитического решения u(x,t) для момента времени t = T вывести в точках $x = x_i = i \cdot h$, h = l/n, i = 0,1,2,...,n:

- 1) при n = 10 $x = x_i$, i = j, j = 0,1,2,...10;
- 2) при n = 100 $x = x_i$, $i = 10 \cdot j$, j = 0,1,2,...10;
- 3) при n = 1000 $x = x_i$, $i = 100 \cdot j$, j = 0,1,2,...10;

Варианты лабораторной работы

No	а	φ (<i>x</i>)	$\alpha(t)$	$\beta(t)$	f(x,t)	u(x,t)
1	1	0	sin t	$e \cdot \sin t$	$e^x \cdot (\cos t - \sin t)$	$e^x \cdot \sin t$
2	$\frac{1}{4}$	$1+4x^3$	e^{t}	$4+e^t$	$e^t - 6x$	$4x^3 + e^t$
3	$\frac{1}{2}$	$12,5 + \\ +2\ln(1+x)$	$\frac{(t+5)^2}{2}$	$\frac{\left(t+5\right)^2}{2} + \\ +2\ln 2$	$\frac{1}{(1+x)^2} + t + 5$	$\frac{(t+5)^2}{2} + \\ +2\ln(1+x)$
4	$\frac{1}{(\ln 3)^2}$	3 ^x	$t^2 + 1$	$3(t^2+1)$	$3^x(-t^2 + 2t - 1)$	$3^x(t^2+1)$
5	1	ln(1+x)	0	$\ln 2 \cdot e^t$	$e^t \cdot \left[\ln(1+x) + \frac{1}{(1+x)^2} \right]$	$e^t \cdot \ln(1+x)$
6	$\frac{1}{6}$	$4x^3$	0	$4e^t$	$4x(x^2-1)e^t$	$4x^3 \cdot e^t$
7	$\frac{1}{2}$	e^x	e^{t}	e^{1+t}	$\frac{1}{2}e^{x+t}$	e^{x+t}
8	1	1	1	e^t	$(x-t^2)\cdot e^{x\cdot t}$	$e^{x \cdot t}$
9	ln 3	$(x^3 + 1)$	3^t	$2 \cdot 3^t$	$\ln 3 \cdot 3^t \cdot (x^3 - 6x + 1)$	$3^t \cdot (x^3 + 1)$
10	$\frac{1}{6}$	x^3	t	1+ <i>t</i>	1-x	$x^3 + t$