Расчет статически неопределимой стержневой системы на растяжение-сжатие

Начертить стержневую систему с указанием всех размеров и записать исходные данные для расчета в соответствии со своим шифром. Шифр состоит из четырех цифр, условно обозначаемых **ABCD**. Схема системы выбирается по первым двум цифрам шифра **AB** из Таблицы 1 (например, если первые две цифры 01, то выбирается схема №1). Остальные исходные данные содержатся в Таблице 2. Физические характеристики материалов стержней принимаются в соответствии с Таблицей 3.

Часть 1. Расчет на силовое воздействие (сила F).

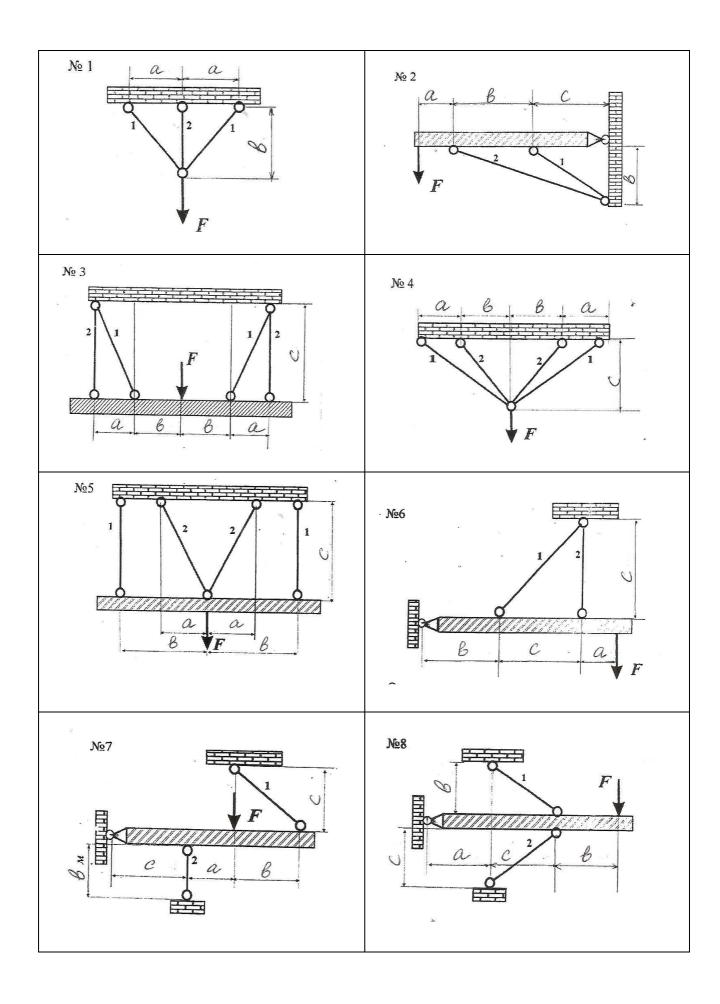
- 1.1. Начертить схему усилий и записать уравнения равновесия. Указать степень статической неопределимости.
- 1.2. Начертить схему возможных перемещений и записать уравнение совместности перемещений (геометрическое уравнение).
- 1.3. Записать выражения для удлинений стержней в соответствии с законом Гука и подставить их в уравнение совместности.
- 1.4. С помощью получившейся системы уравнений выразить продольные усилия через силу \mathbf{F} .
- 1.5. Из условий прочности для стержней определить:
 - а) площади сечений A_1 и A_2 стержней, если задана величина силы F;
- б) грузоподъемность системы, т.е. допускаемую величину силы \mathbf{F} , если заданы площади сечений \mathbf{A}_1 и \mathbf{A}_2 .
 - 1.6. Найти напряжения в стержнях $\sigma_1(F)$ и $\sigma_2(F)$, проверить выполнение условий прочности.

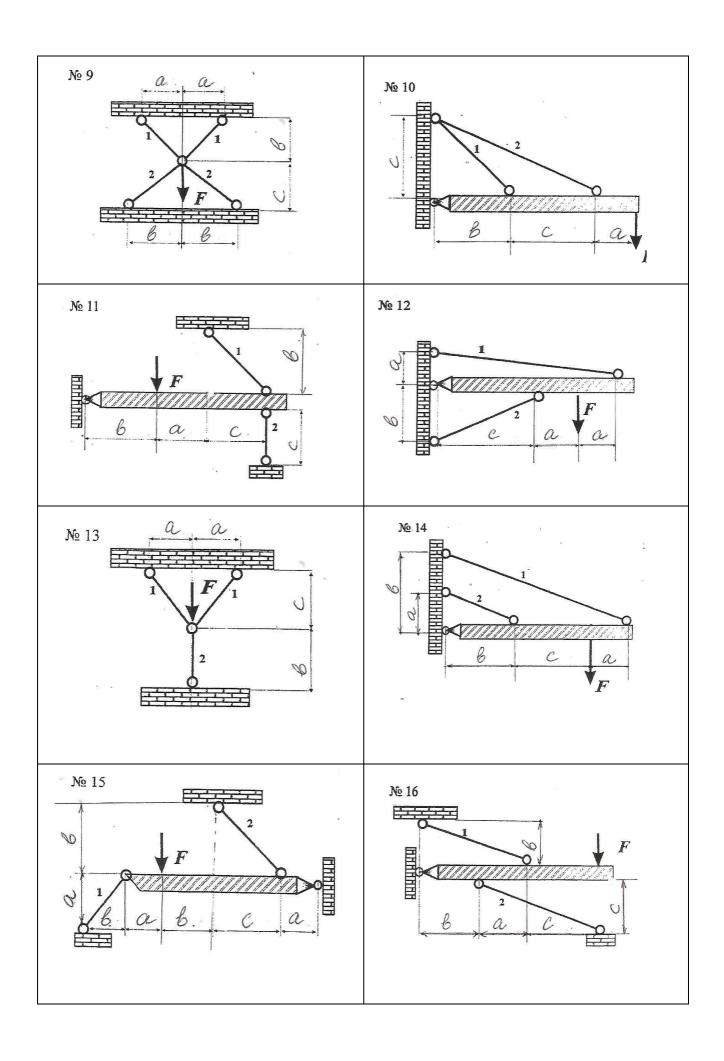
Часть 2. Расчет на температурное воздействие Δt° (считать F=0)

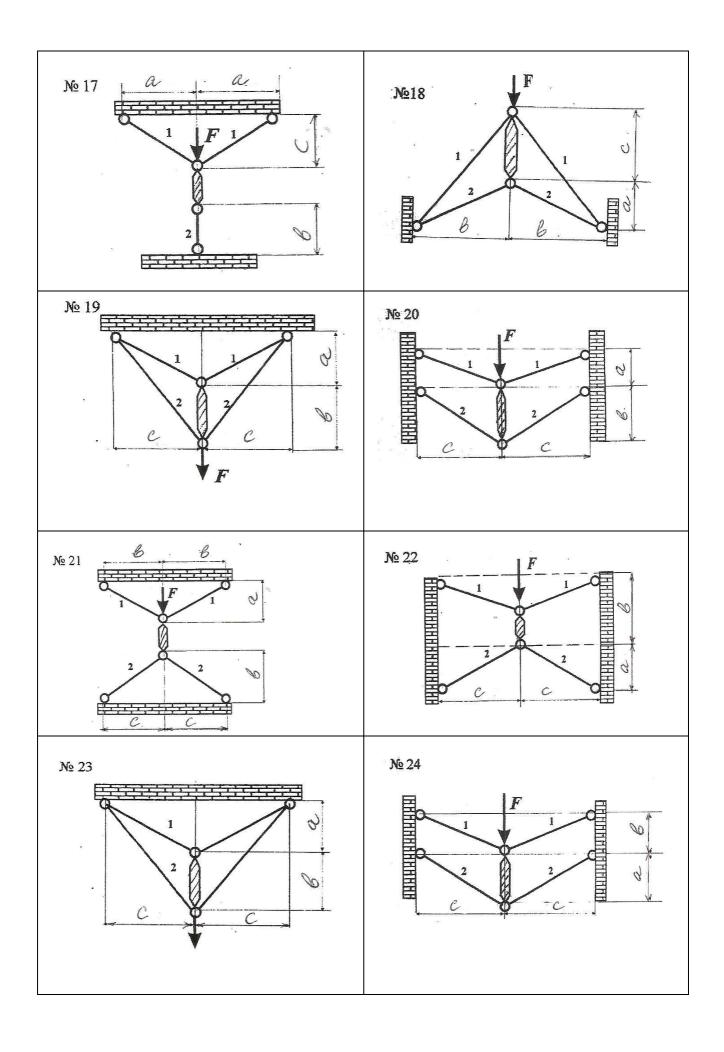
- 2.1. Начертить схему усилий и записать уравнения равновесия (так же, как в п.1.1, только считать F=0). Учитывая соотношение площадей, переписать уравнение в напряжениях.
- 2.2. Начертить схему возможных перемещений и записать уравнение совместности перемещений (на рисунке учесть реальный характер деформации стержней, уравнение совместности взять из п.1.2).
- 2.3. Записать выражения для удлинений стержней (через напряжения) в соответствии с законом Гука, учтя температурное слагаемое для стержня, номер которого указан в таблице в столбце Δt° в скобках, и подставить их в уравнение совместности.
- 2.4. Из полученной системы уравнений найти дополнительные напряжения $\sigma_1(\Delta t^\circ)$ и $\sigma_2(\Delta t^\circ)$, возникающие в стержнях от температурного возлействия.

Часть 3. Расчет на неточность изготовления δ (считать F=0)

- 3.1. См. п.2.1.
- 3.2. См. п.2.2.
- 3.3. Аналогично п.2.3, только в законе Гука учитывать не температурное слагаемое, а неточность изготовления δ для стержня, номер которого указан в таблице в столбце δ в скобках.
- 3.4. Из полученной системы уравнений найти дополнительные монтажные напряжения $\sigma_1(\delta)$ и $\sigma_2(\delta)$, возникающие в стержнях от начальной неточности изготовления.


Часть 4. Определение суммарных напряжений


В соответствии с принципом суперпозиции определить суммарные напряжения в стержнях от одновременного действия всех факторов


$$\sigma_i = \sigma_i(F) + \sigma_i(\Delta t) + \sigma_i(\delta), i = 1, 2$$

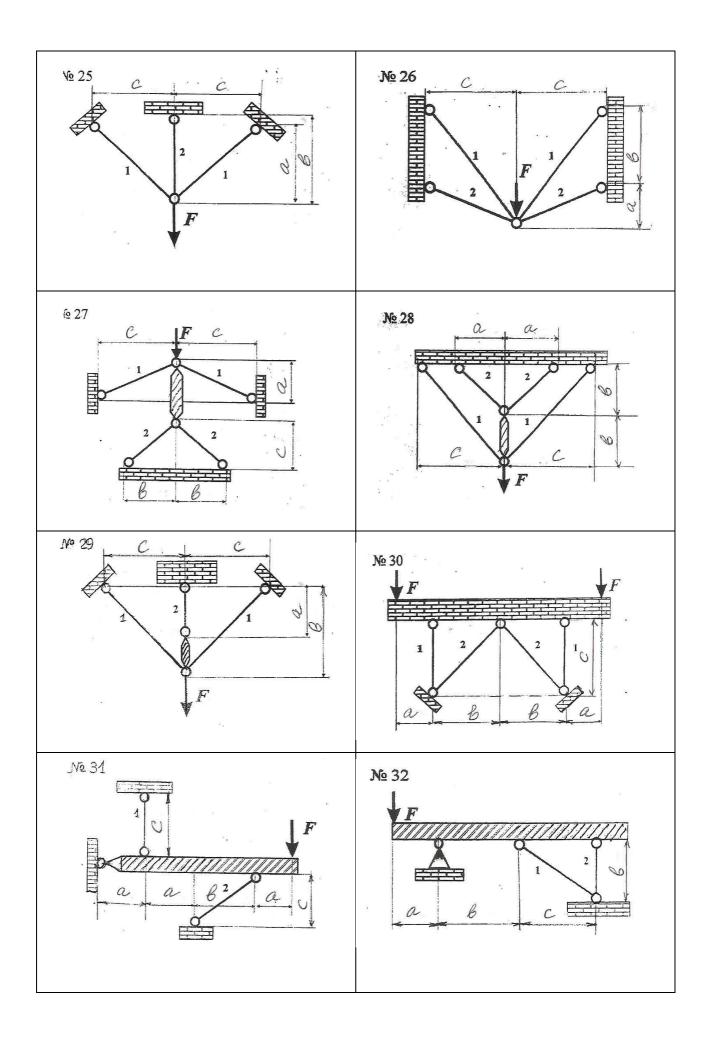

и сделать выводы о выполнении условий прочности.

Таблица 1

Таблица 2

B	a,	<i>b</i> ,	<i>c</i> ,	A_1/A_2	C	F,	A_1 ,	D	Δt ,	δ ,	Матер	иал
	M	M	M			кН	10^{-4}m^2		$^{\circ}C$	мм	1	2
							10 %		C		стержень	стержень
0	1	2	2,5	2/3	0	100	-	0	30 (1)	-0,2 (2)	Сталь	Сталь
1	1,5	2,5	3	2	1	ı	4	1	-40 (2)	0,5 (1)	Сталь	Медь
2	1,2	2	2,6	1/2	2	150	ı	2	50 (1)	-0,3 (2)	Медь	Сталь
3	1,4	1,8	2	3/4	3	-	3	3	-30 (2)	0,4 (1)	Алюминий	Медь
4	1,8	2,4	2,6	3/2	4	80	-	4	40 (1)	-0,4 (2)	Сталь	Чугун
5	1,3	1,5	2	3/5	5	ı	5	5	-50 (2)	0,6(1)	Чугун	Сталь
6	1,1	1,8	2,5	4/5	6	120	-	6	60 (2)	-0,5(1)	Медь	Чугун
7	2	2,4	3	5/3	7	-	2	7	-20 (1)	-0,6 (2)	Сталь	Алюминий
8	1,9	2,5	2,8	5/4	8	160	-	8	45 (2)	0,2 (1)	Алюминий	Сталь
9	1,7	2,3	2,5	1	9	-	6	9	-45 (1)	0,3 (2)	Медь	Алюминий

Таблица 3

Материал	Модуль Юнга	Допускаемые	Коэффициент
	E, $10^5 M\Pi a$	напряжения	линейного
		$[\sigma]$, M Πa	расширения
			$lpha_{_{t^{\circ}}}$, 10^{-7} 1/град
Сталь	2	160	125
Медь	1	120	165
Чугун	1,2	100	100
Алюминий	0,75	80	250