МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» (РУТ (МИИТ)

	Одобрено кафедрой
« <u>ЭЛЕКТРИФИКАЦИЯ И ЭЛ</u>	<u>ЕКТРОСНАБЖЕНИЕ</u> »
Протокол № <u>8</u> от <u>17.0</u>	<u>4</u> 201 <u>18</u> Γ.
- Автор: Харченко А Ф. к та	и от и от проф

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ С МЕТОДИЧЕСКИМИ УКАЗАНИЯМИ

по дисциплине

«Электронная техника и преобразователи в электроснабжении»

Уровень ВО: Специалитет

Форма обучения: Заочная

Kypc: 5

Специальность/Направление: 23.05.05 Системы обеспечения движения

поездов (СДс)

Специализация/Профиль/Магистерская программа: (СЭ)

Электроснабжение железных дорог

Москва

Рекомендации по оформлению контрольной работы

Перед выполнением контрольной работы необходимо рассмотреть задание на контрольную работу и изучить методические указания к выполнению задач. Для более детального изучения теоретического материала следует использовать рекомендованную в методических указаниях литературу.

Номер варианта и соответствующие исходные данные для расчета приводятся в условиях на каждую задачу и выбираются студентами по двум последним цифрам учебного шифра студента.

При выполнении контрольной работы необходимо соблюдать следующие правила:

- контрольная работа оформляется в виде расчетно-пояснительной записки оформленной на компьютере с распечаткой на листах формата А4 с одной стороны в соответствие с общими требованиями к подобным документам (буквенные и графические обозначения должны соответствовать ГОСТам);
- на первом (титульном) листе записки должны быть указаны: название университета и кафедры; название дисциплины, по которой выполняется контрольная работа; фамилия и учебный шифр студента, а также фамилия проверяющего преподавателя;
- условие задачи должно быть полностью перенесено в контрольную работу с численными значениями своего варианта;
- графический материал выполняется на миллиметровой бумаге или с использованием компьютерной графики в формате A4 (210 х 297) и подшивается к расчетно-пояснительной записке в соответствующих местах. Графики должны иметь наименование. Масштабы для графиков

выбираются студентами самостоятельно с учетом точности требуемой для расчетов;

- при выполнении расчетов следует привести расчетную формулу, сделать подстановку численных значений и записать результат с указанием размерности. Результаты расчетов достаточно приводить с точностью до трех-четырех значащих цифр, если она не оговаривается особо;
- расшифровку каждого условного обозначения приводить в каждой задаче один раз при его первом использовании;
- необходимые пояснения формировать самостоятельно, по возможности кратко и ясно (не следует переписывать в качестве пояснений тексты из методических указаний или литературных источников);
- в конце работы должны быть указаны: список используемой литературы, дата выполнения работы и подпись студента;
- все исправления и дополнения, выполненные по замечаниям рецензента, размещаются в конце работы.

Внимание! Работы, выполненные не по своему варианту, а также диаграммы и зависимости, выполненные без масштаба и наименований, *не проверяются и не зачитываются*.

ЗАДАЧА 1

Расчёт однокаскадного ключевого усилителя на транзисторе

1. Составить схему однокаскадного ключевого усилителя на транзисторе типа p-n-p.

Усилитель соединяется с источником входных импульсов посредством резисторов связи (R_c) и смещения (R_{cm}) .

2. Заданы: напряжение питания коллекторных цепей $U_{\rm K}$, напряжение источника положительного смещения $U_{\rm CM}$, величина сопротивления нагрузки каскада $R_{\rm K}$, предельная частота следования импульсов $f_{\rm ПP}$ и наибольшая температура окружающей среды $T_{\rm MAX}$.

Требуется выбрать тип транзистора и номинальные величины резисторов $R_{\rm c}$ и $R_{\rm cm}$, обеспечивающих ключевой режим усилителя при потенциалах входа $\varphi_{_{B}}$ и $\varphi_{_{H}}$.

- 3. Найти значения потенциала входа φ'_{BX} и φ''_{BX} , при которых еще обеспечивается ключевой режим каскада в случае плавного изменения сигнала $\varphi_{BX} = f(t)$ между φ_{B} и φ_{H} (рис. 1).
- 4. По диаграмме, представленной на рис. 1, и найденным φ'_{BX} и φ''_{BX} построить диаграмму изменения потенциала коллектора $\varphi_{K} = f(t)$ транзистора V в ключевом режиме.

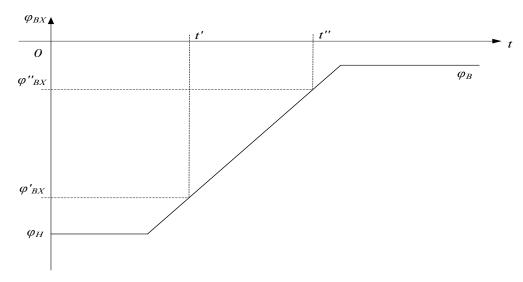


Рис. 1

Исходные данные выбираются из табл. 1 и табл. 2.

Исходные д		Вариант (предпоследняя цифра учебного шифра)									
		0	1	2	3	4	5	6	7	8	9
Параметры	Uпо,	0,1	0,15	0,2	0,25	0,3	0,35	0,40	0,45	0,50	0,55
входного											
сигнала	α	0,6	0,5	0,4	0,7	0,75	0,8	0,85	0,5	0,6	0,65
$f_{{}_{\Pi P}},{}_{\mathbf{K}\Gamma\mathbf{U}}$		50	250	120	10	15	30	100	60	150	200
Tmax, ⁰ C		40	40	45	45	50	50	55	55	50	45

Таблица 2

Исходные	Вариант (последняя цифра учебного шифра)											
данные	0	1	2	3	4	5	6	7	8	9		
<i>U</i> к, В	-6	-8	-10	-12	-16	-20	-24	-30	-36	-40		
<i>U</i> см, В	6	8	6	8	8	6	10	10	12	12		
<i>R</i> к, Ом	39	120	200	51	91	150	82	160	220	300		

ЗАДАЧА 2

Расчет неуправляемого выпрямителя с идеальными диодами и трансформатором

Задаются напряжение сети U_C , средние значения выпрямленного напряжения U_d и тока I_d на активной нагрузке, число пульсаций выпрямленного напряжения за период.

- 1. Составить схему выпрямителя.
- 2. Рассчитать основные параметры трансформатора при питании активной нагрузки непосредственно от выпрямителя (условия «а»).
- 3. Рассчитать параметры токов и напряжении на нагрузке, если последовательно cактивной нагрузкой включена индуктивность k_n обеспечивающего заданное отношение сглаживающего реактора, действующего значения основной гармонической составляющей тока I_d (условия «б»).
- 4. Для обоих вариантов построить временные диаграммы выпрямленного напряжения и тока, ЭДС и тока вторичной (вентильной) обмотки трансформатора, напряжение на одном из вентилей и тока вентиля.

При выполнении расчетов и построении диаграмм трансформатор и вентили считать идеальными, а активным сопротивлением обмотки сглаживающего реактора можно пренебречь.

Исходные данные выбрать из табл. 3 и 4 по соответствующим цифрам учебного шифра.

Таблица 3

Исходные данные	Ва	Вариант (предпоследняя цифра учебного шифра)								
	0	1	2	3	4	5	6	7	8	9
Выпрямленное	100	200	300	400	500	600	700	800	1500	3000
напряжение U_d , В										
Выпрямленный	1500	1200	1000	800	600	500	400	300	200	100
ток Id , A										

Таблица 4

Исходные	Вариант (последняя цифра учебного шифра)									
данные	0	1	2	3	4	5	6	7	8	9
Кратность пульсаций, <i>р</i>			2		•	3			6	
Напряжение сети U_c , В	220	380	3000	6000	10000	220	380	3000	6000	10000
Отношение $k_n = I_{dn} / I_d$	0,1	0,2	0,25	0,3	0,15	0,02	0,025	0,03	0,01	0,015

Методические указания по содержанию и выполнению задачи 1

Построение принципиальной схемы усилителя необходимо начать с изучения существующих схем и теории работы транзистора в ключевом режиме, изложенных, например, в [1;2].Пример построения расчетной схемы приведен на рис. 2.

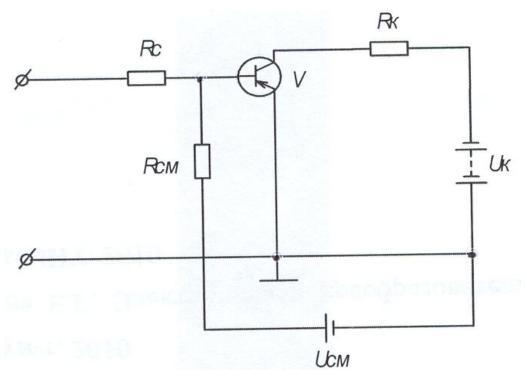


Рис. 2

Выбор типа транзистора осуществляется с использованием исходных данных $U_{\rm K}$, $R_{\rm K}$, $f_{\rm \Pi P}$, T_{max} , приведенных в табл. 1 и 2. Параметры некоторых транзисторов приведены в Приложении 1, более подробная информация о транзисторах дана в справочниках [3,4] и в Интернете.

Величины резисторов связи Rс и смещения Rсм рассчитываются из следующих соображений. В открытом состоянии транзистора V необходимо обеспечить базовый ток, достаточный для его надежного насыщения, поэтому коэффициент насыщения должен быть 1,5-2. Потенциал входа равен вычисленному значению φ_H , а потенциал на базе φ_6 = $U_{\text{кэо}}$. Ток базы определяем с учетом минимального коэффициента усиления B, выбранного типа транзистора, тогда

$$I_{\delta}^{\prime} = (1,5-2) \cdot \frac{I_{\kappa \max}}{B},$$
 (1)
где $I_{rmax} = U_{\kappa} / R_{\kappa}$.

Расчетная схема в режиме насыщения (транзистор полностью открыт) примет вид, представленный на рис. 3.

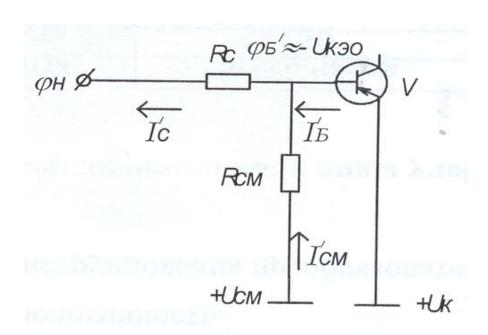


Рис. 3

По этой схеме с использованием первого закона Кирхгофа и закона Ома составляем уравнение, связывающее известные или выбранные значения $U_{\text{см}}$, φ_H , φ_G , I_G с исковыми сопротивлениями R_c и $R_{\text{см}}$. Получаем уравнение с двумя неизвестными $(R_c$ и $R_{\text{см}})$.

$$I_c' = I_{\delta}' + I_{cM}' \bullet \qquad I_{\delta}' + \frac{U_{cM} - \varphi_{\delta}'}{R_{cM}} = \frac{\varphi_{\delta}' - \varphi_{H}}{R_{c}}. \tag{2}$$

Для определения $R_{\rm c}$ и $R_{\rm cm}$ составляем второе уравнение, когда транзистор находится в закрытом состоянии (режим отсечки). В закрытом состоянии транзистора расчетная схема принимает вид представленный на рис. 4.

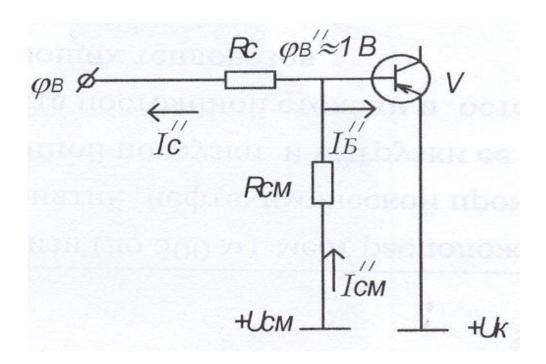


Рис. 4

Потенциал на базе ϕ_6 выбираем на небольшом положительном уровне (0,2-1 В), чтобы обеспечить надежное запирание транзистора. Необходимый в расчетах коллекторный ток в закрытом состоянии при заданной максимальной температуре окружающей среды определяется по следующей формуле

$$I_{\kappa omax} = I_{\kappa o} \cdot \exp[(T_{max} - T_c)\delta], \tag{3}$$

где $I_{\kappa o}$ - обратный ток коллектора, выбранного транзистора;

 δ - 0,038-0,09 для германиевых и 0,12 для кремниевых транзисторов;

 T_c — температура окружающей среды, для которой дано значение $I_{\kappa o}$ в справочниках (обычно 25°C).

Принимаем, что ток базы в режиме отсечки

$$I_{6}^{\prime\prime}=I_{\kappa o \max}$$
 .

По схеме, представленной на рис. 4 составляем аналогичные (2) уравнения, в которых $R_{\rm c}$ и $R_{\rm cm}$ неизвестны.

$$I_{c}^{"} = I_{cM}^{"} - I_{\kappa o \max} .$$

$$\frac{U_{cM} - \varphi_{\delta}^{"}}{R_{cM}} = I_{\kappa o \max} + \frac{\varphi_{\delta}^{"} - \varphi_{B}}{R_{c}} .$$
(4)

Совместное решение уравнений (2) и (4) даст искомые значения сопротивлений резисторов $R_{\rm c}$ и $R_{\rm cm}$. Полученные значения сопротивлений резисторов необходимо округлить до значений, предусмотренных стандартной шкалой номиналов резисторов, и в последующих расчетах нужно использовать выбранные номиналы.

Шкала номинальных значений резисторов

10 11 12 13 15 16 18 20 22 24 27 30
$$\times$$
 10ⁿ, [Ом], 33 36 39 43 47 51 56 62 68 75 82 91 \times где $n=0,1,2...$

После выбора номиналов резисторов $R_{\rm c}$ и $R_{\rm cm}$ можно приступить к решению п. 3 задания. Для этого надо составить две расчетные схемы наподобие схем представленных на рис. 3 и 4 с известными $R_{\rm c}$ и $R_{\rm cm}$, но неизвестными $\varphi'_{{\scriptscriptstyle BX}}$ и $\varphi''_{{\scriptscriptstyle BX}}$.

Значение φ'_{BX} соответствует моменту, когда транзистор еще находится в режиме насыщения, т.е. его ток базы минимальный для режима насыщения (коэффициент насыщения равен 1, а не 1,5-2 раза больший, как было принято

для надежной работы ключа). Значение ϕ_6 равно падению напряжения в открытом эмиттерном переходе ϕ_6 = $U_{\text{кэо}}$. С учетом этих особенностей и составляется уравнение по аналогии с (2), но с одним неизвестным ϕ'_{BX} .

Значение $\varphi_{_{BX}}^{''}$ соответствует моменту закрытия транзистора, т.е. $\varphi_{_{6}}^{''}=0$ и $I_{6}^{''}=0$. С учетом этих требований составляется уравнение по аналогии с (4), но с одним неизвестным $\varphi_{_{BX}}^{''}$.

Решение новых уравнений с неизвестными φ'_{BX} и φ''_{BX} позволяет вычислить их значения, после чего необходимо построить диаграмму изменения потенциала коллектора $\varphi_{K} = f(t)$ транзистора V в ключевом режиме. На рис. 1 приведен пример диаграммы входного сигнала. Диаграмму напряжения на выходе каскада следует строить под диаграммой входного сигнала в одном масштабе времени, обозначив и указав масштабы напряжений, согласно заданию.

Масштаб по времени выбрать произвольно. При t < t' транзистор находится в режиме насыщения, $\phi_{\rm k}$ определяется падением напряжения эмиттер- коллектор транзистора ($^{U}_{\rm K90}$); при t'< t < t'' транзистор работает в усилительном режиме, т.е. $\phi_{\rm k}$ изменяется пропорционально $\phi_{\rm Bx}$; при t >t'' транзистор заперт.

Определяя ϕ_{κ} в запертом состоянии, можно пренебречь нулевым коллекторным током транзистора, тогда $\phi_{\kappa} = U \kappa$.

Методические указания по содержанию и выполнению задачи 2

Схему выпрямителя следует составить после ознакомления с существующими схемами выпрямления однофазного или трехфазного тока, обеспечивающих заданную кратность пульсаций p [5;6].

Затем выполнить расчет основных параметров трансформатора, в предположении, что нагрузка чисто активная (условие «а»). Расчет действующих значений токов I_2 и ЭДС E_2 во вторичной обмотке

трансформатора, действующие значения тока I_1 в сетевой обмотке трансформатора, амплитуду обратного напряжения U_{bm} (напряжения на закрытом диоде), а также типовую мощность трансформатора проводить с использованием «Основных соотношений в выпрямителях» приведенных в Приложении 2.

Коэффициент трансформации можно определить как отношение U_c/E_2 .

Амплитудные значения тока и напряжения для однофазных схем выпрямления превышают действующие значения на величину $\sqrt{2}$; а для трехфазных схем - $\sqrt{6}$. Сопротивление активной нагрузки определяется по закону Ома: $R_d = U_{d}/I_d$.

При активной нагрузке форма тока повторяет форму напряжения. Временные диаграммы выпрямителя работающего на активную нагрузку должны отражать изменения: u_2 , u_d , i_d , i_{al} , $i_{1,2}$, в течение 1,5 периода промышленной частоты. Где i_{al} , $i_{1,2}$ - соответственно, текущее значение тока через один из диодов и текущие значения токов в первичной и вторичной обмотках трансформатора. На диаграммах $u_d = f(\omega t)$ и $i_d = f(\omega t)$ нанести горизонтальные линии, соответствующие I_d , U_d . Типичные временные диаграммы напряжений и токов для различных схем выпрямления приведены в [5;6].

Расчет параметров токов и напряжения на нагрузке, если последовательно с активной нагрузкой включена индуктивность сглаживающего реактора (условие «б»), следует начать с определения величины индуктивности реактора необходимой для сглаживания тока до заданной степени.

Для определения величины индуктивности реактора нужно вывести соотношение между действующим значением переменной составляющей тока нагрузки и индуктивностью реактора.

Эту задачу можно решить, применив разложение кривой выпрямленного напряжения в ряд Фурье [7]. В данной задаче нет смысла учитывать гармоники высших порядков, и следует ограничиться влиянием только первой (основной) гармоникой, так как амплитуда второй гармонической составляющей тока

почти в 10 раз меньше амплитуды первой (основной) гармоники выпрямленного тока, что обеспечит точность расчетов в пределах 2-3%.

Для определения величины индуктивности L, необходимой для обеспечения заданной значении κ_n , необходимо опередить подводимые к нагрузке пульсирующие напряжение и ток.

Амплитуду напряжения гармонических составляющих n можно определить по формуле

$$U_{d_{M}(n)} = 2U_{d}/(n^{2}-1), (5)$$

а амплитуду тока соответствующей (n) гармонической составляющей по формуле

$$I_{d_{M}(n)} = U_{d_{M}(n)}/(R_{H} + jX_{(n)}) = U_{d_{M}(n)}/(R_{H} + jn\omega L) = 2U_{d}/(n^{2}-1)(R_{H} + jn\omega L).$$
 (6)

По условиям задачи
$$I_{dM(n)} = \kappa_n \cdot I_d \sqrt{2}$$
. (7)

Тогда величина индуктивности реактора L определяется из выражения

$$\kappa_n \cdot I_d \sqrt{2} = 2U_d / (n^2 - 1)(R_H + jn\omega L). \tag{8}$$

Если индуктивное сопротивление $X_{(n)}>5$ $R_{\rm H}$, то *индуктивности L*. можно в этом случае вычислить по выражению

$$\kappa_n \cdot I_d \sqrt{2} = 2U_d / [(n^2 - 1)(n\omega L)]. \tag{9}$$

Фазовый угол основной гармоники тока можно определить из выражения

$$\varphi = arctg \left(X_{(n)} / R_d \right). \tag{10}$$

При построении диаграмм для условия «б» следует в одних осях с u_d построить синусоиду основной гармоники переменной составляющей выпрямленного напряжения. Диаграмму $i_d = f(\omega t)$ построить с учетом фазового угла основной гармоники выпрямленного тока.

Диаграммы токов диода и обмотки трансформатора являются выкопировки из кривой $i_d = f(\omega t)$ с учетом длительности и направления протекания i_d по ним.

Все диаграммы должны строиться с соблюдением выбранных масштабов угла, напряжения и тока. Масштабы напряжения (тока) всех диаграмм,

иллюстрирующих работу вторичной обмотки трансформатора и цепей выпрямителя должны быть одинаковыми.

Решение условия «б» можно также решить с помощью дифференциального уравнения, описывающего схему рис. 5.

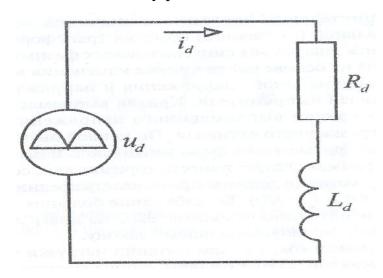


Рис. 5

Рекомендуемая литература

- 1. Забродин Ю.С. Промышленная электроника. -М.: Высшая школа, 1982.
- 2. Засорин С.Н. и др. Электронная и преобразовательная техника. –М.: Транспорт, 1981
- 3. Полупроводниковые приборы. Транзисторы малой мощности: Справочник: под ред. Гололедова А.В.:-М.: Радио и связь. КУБК-а,1994.
- 4. Полупроводниковые приборы. Транзисторы средней и большой мощности: Справочник: под ред. Гололедова А.В..-М.: Радио и связь. КУБК-а,1994.
- 5. Харченко А.Ф. Неуправляемые силовые полупроводниковые выпрямители: Уч. пос. М.: МИИТ,2009.
- 6. Попков О.З. Основы преобразовательной техники: Уч. пос. –М.: Издательский дом МЭИ, 2007.
- 7. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М. : Высшая школа, 1978.

Приложение 1 Основные соотношения в выпрямителях работающих на активную нагрузку

Схема выпрямления	U2/Ud	I_2/I_d	$k_{\scriptscriptstyle T} I_1 / I_d$	U_{bm}/U_{d}	P_d/S_T	I _a /I _d	$U_{ m dac}/U_{ m d}$
Однофазная двухпульсовая с нулевым выводом	1,11	0,709	1,0	3,14	0,75	0,5	0,47 f=100 Гц
Однофазная двухпульсовая мостовая	1,11	1,11	1,11	1,57	0,9	0,5	0,47 f=100 Гц
Трехфазная с нулевым выводом (трехпульсовая)	0,855	0,583	0,476	2,09	0,74	0,33	0,18 f=150 Гц
Шестифазная с нулевым выводом	0,74	0,41	0,476	2,09	0,645	0,167	0,04 f=300 Гц
Трехфазная мостовая (шестипульсовая)	0,427	0,817	0,817	1,05	0,95	0,33	0,04 f=300 Гц
Шестифазная с уравнительным реактором	0,855	0,291	0,408	2,09	0,79	0,166	0,04 f=300 Гц

Принятые обозначения:

- $U_2^{\bar{}}$ действующее значение фазного напряжения вторичной (вентильной) обмотки трансформатора;
 - $U_{\text{d}}-$ среднее значение выпрямленного напряжения;
- $U_{
 m dac}$ действующее значение переменной составляющей выпрямленного напряжения;
 - $U_{bm}-$ максимальное значение обратного напряжения на вентиле;
 - I_d среднее значение выпрямленного тока в нагрузке;
- I_a среднее значение выпрямленного тока, протекающего через один вентиль или через одно плечо выпрямительной схемы;