
Contents
Practice exercise: how to solve? ... 1

Task: .. 1

Practice exercise: how to solve?
Try to solve this exercise yourself. Think of the structure: what part is same for different loan systems

and what part is different? Avoid duplication! Do it step-by-step and start with base class. Write tests for

every method to see if they work properly. Think of at least 2 customers and write down (on paper) the

expected values for each step for finding the loan (loan duration, monthly payment etc)! This makes it

easier to understand the task and easier to test. DO NOT start immediately writing the code.

If you have mistakes/problems then use debugging or Console.WriteLine() to print out the values of your

variables to find the problematic place.

If you have done your own version then check the uploaded solution. Yours does not have to look the

same but should follow the same principles. Uploaded solution does not have a class for Loan with

unfixed interest and is missing tests. Add them, refactor your code (if necessary) and submit the solution

as your 15th homework.

NB! PLEASE do not check the solution before you have done your own version.

If you have questions and/or are stuck then come to the lesson on Thursday (09:40 – 12:00), 13th of

December or Friday (11:00-13:30), 14th of December.

Task:
We are creating a loan system which takes customer’s data as a parameter and finds:

 Loan duration

 Maximum loan amount

 Monthly payments amount

We have (classes):

1. Customer: person who wants to get a loan.

 Every customer has public properties for Age, MonthlyIncome, MonthlyObligations and

Assets.

o Monthly income : net salary that customer receives on account every month

o Montly obligations : mandatory amount that customer pays monthly for other

expenses (other loans etc)

o Assets : value of the assets that can be used to guarantee the loan, for example an

existing apartment.

 Customer has a constructor which takes name as a parameter and sets its value. Based on

the name it also generates customerCode. Name has to be at least 5 characters long and

https://www.youtube.com/watch?v=u-HdLtqEOog

consist of first and last name. If invalid name is entered then a warning is displayed and

name is set to „Jhon Doe“.

 Customer code is generated based on the first names first letter and from last name where

every letter is replaced by its alphabetical position: A=1, B=2, C=3 etc. If customer has

multiple last names then we only use one last name. If customer has multiple first names,

then we only use the first one.

Example: „Antti Aabel“: code is generated from AAabel-> ""1 1 1 2 5 12 " -> "1112512 "

2. Loan systems: there are multiple loan systems which have different conditions for loans. They

calculate maximum loan amount and monthly loan payments based on the customer’s data.

All loan systems:

 Assume that customer wants to take the loan for as long time as possible (based on

their age).

 Maximum time for a loan is 30 years.

 Have a public method GetLoan(Customer customer) which takes customer as a

parameter and:

1. Prints out customer data

2. Prints loan data

A. Standard Loan system: calculates the maximum available loan and monthly payment for a

customer based on different conditions. Maximum loan amount depents on multiple

conditions (in order of importance):

 Customer’s age: maximum age for paying back the loan is 65. (Person older than 35

cannot take loan for 30 years)

 Customer’s monthy income: monthly loan payment can be max 27% from monthly

income. If customer has monthyl obligations then they should be deducted (lahutatud)

from monthly income before calculating the maximum.

Example: monthly income is 1500 and obligations 200. Maximum monthly payment is

(1500-200) * 0.27 = 351

 Customer has to have at least 300 euros on their account after monthly loan payment.

(If customers account balance after paying for loan and other payments is less or equal

to 300 then customer cannot get a loan).

B. Loan with insurance: similar to Standard loan but here a loan insurance is added to the

loan. This means that customer pays more but can also get a bigger loan.

 Loan payment can be up to 45% from monthly income.

 Montly loan payment has to include insurance payment. Insurance is 4% from maximum

loan amount.

 Maximum age can be up to 75.

 Print how much is insurance payment.

C. Loan with unfixed interest: similar to standard loan but:

 This loan has interest rate which is not fixed and might be different for every customer.

Interest rate can be between 0.5 and 3%. Interest rate changes (randomly) after every

3rd customer. (First 3 customers getting a loan have the same interest rate, 4-6

customers have a different one etc).

Interest rate payment has to be included in the maximum monthly payment (not added

to it).

 Customer’s assets : having assets increases the maximum available loan by 30% from

their price. If customer has assets wirth more than 10000 then minimum income

requirement (of 300 euros) is not required.

Example: assets are 5000. 5000*0.3 = 1500. This amount is added to maximum loan

amount.

 If customer is too old for a loan then he/she can get a loan for 2 years and max amount

is half of the assets worth.

Example: customer is 90 and his assets are 5000. Max loan amount is 5000/2 = 2500.

 Print also how much is payed for interest.

Requirements and tips:

 Create 4 different customers and try getting a loan with every system in main method.

Test different conditions!

 Add tests for every (sub)method that does a calculation/changes values and is

important in your opinion!

 Write all steps for finding a loan as submethods; do not make a long complicated

method. Method should not be longer than 20-30 lines.

 Testing: a method that is being tested should have a return value (or give value to a

property that is being tested). Private methods cannot be tested. Private methods can

be tested if you make test class to inherit from the class that you are testing. Internal

methods can be tested (if you need to test a non-private method then make it internal

or make an internal method for getting their values).

 After finishing refactor your code: make methods smaller if neccessary, delete unused

variables and empty lines. Make the code look good. Resharper will help you in this (free

for students).

 Put all classes/intefaces to a separate file.

 Good! You have managed to read the task until here. Solution file is protected by a psw

which is: „studyhard. You need to enter the password to unpack it.

 For creating customer code you can:

1. Use an array or dictionary or list and use indexes

2. Use ASCII table: check the decimal values for every capital letter (under „ASCII

printable characters“). Do you see a pattern? Getting decimal value from

character:

int number = (int)characterExample:

 NB! ‘A’ and ‘a’ both have to have a value of 1. Custom letters (õäüõ) can be ignored.

Example:
 Customer aAabel = new Customer("Anti Aabel");

 aAabel.Age = 60;

https://www.jetbrains.com/resharper/
https://www.rapidtables.com/code/text/ascii-table.html

 aAabel.MonthlyIncome = 2000;

 Customer mMaasikas = new Customer("Mari Maarikas");
 mMaasikas.Age = 25;
 mMaasikas.MonthlyIncome = 4000;
 mMaasikas.MonthlyPayments = 1000;

 StandardLoan standardLoanSystem = new StandardLoan();
 standardLoanSystem.GiveLoan(aAabel);
 standardLoanSystem.GiveLoan(mMaasikas);

 InsuranceLoan insuranceLoanSystem = new InsuranceLoan();
 insuranceLoanSystem.GiveLoan(aAabel);
 insuranceLoanSystem.GiveLoan(mMaasikas);

