Условия и исходные данные для каждого варианта домашнего задания (задача №4)

Варианты 1-8.

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси Ox. Вектор плотности потока электромагнитной энергии \vec{S} имеет вид: $\vec{S}(x,t) = \vec{S}_m \cos^2(\omega t - k \cdot x)$. Считая волновое число k и амплитудное значение S_m вектора \vec{S} известными и действительными величинами, что допустимо для однородной изотропной среды без эффектов поглощения, найти:

- 1) вектор напряжённости электрического поля \vec{E} этой волны как функцию времени t и координат точки наблюдения;
- 2) вектор напряжённости магнитного поля \vec{H} этой волны как функцию времени t и координат точки наблюдения;
- 3) объёмную плотность энергии w;
- 4 средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение $\langle S \rangle$ плотности потока энергии, переносимой этой волной;
- 6) вектор плотности тока смещения \vec{j}_{cm} ;
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle | \vec{j}_{\scriptscriptstyle CM} | \rangle$;
- 8) величину импульса K_{eo} (в единице объёма).
- 9) записать волновое уравнение для магнитной и электрической компонент рассматриваемой электромагнитной волны и изобразить схематично мгновенную фотографию этой волны.

Таблица исходных данных к задаче для вариантов 1-8.

Номер	Исходн данные за				О	преде.	ПИТЬ			
варианта	$S_m, \frac{\mathcal{L}\mathcal{H}}{c \cdot M^2}$	k, m^{-1}	$ec{E}$	$ec{H}$	w	$\langle ec{S} angle$	$\langle S \rangle$	$ec{j}_{\scriptscriptstyle CM}$	$\langle\left ec{j}_{\scriptscriptstyle{\mathcal{C}^{\mathcal{M}}}} ight angle$	K_{eo}

5 76 6 93	5.2 0.44 0.0 0.45 5.5 0.47 3.5 0.48 13.0 0.50			
6 93 7 11				

Варианты 9-16.

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси Oy. Вектор плотности потока электромагнитной энергии \vec{S} имеет вид: $\vec{S}(y,t) = \vec{S}_m \cos^2(\omega t - k \cdot y)$. Считая волновое число k и амплитудное значение S_m вектора \vec{S} известными и действительными величинами, что допустимо для однородной изотропной среды без эффектов поглощения, найти:

- 2) вектор напряжённости электрического поля \vec{E} этой волны как функцию времени t и координат точки наблюдения;
- 2) вектор напряжённости магнитного поля \vec{H} этой волны как функцию времени t и координат точки наблюдения;
- 3) объёмную плотность энергии w;
- 4 средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение $\langle S \rangle$ плотности потока энергии, переносимой этой волной;
- 6) вектор плотности тока смещения $\vec{j}_{c_{M}}$;
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle | \ \vec{j}_{\scriptscriptstyle CM} \ | \rangle$;
- 8) величину импульса $K_{_{e o}}$ (в единице объёма).
- 9) записать волновое уравнение для магнитной и электрической компонент рассматриваемой электромагнитной волны и изобразить схематично мгновенную фотографию этой волны.

Таблица исходных данных к задаче для вариантов 9-16.

Номер	Исходн данные за				О	преде	пить			
варианта	$S_m, \frac{\mathcal{J}\mathcal{H}}{c \cdot \mathcal{M}^2}$	k, m^{-1}	$ec{E}$	$ec{H}$	w	$\langle ec{S} angle$	$\langle S \rangle$	$ec{j}_{\scriptscriptstyle CM}$	$\langle\left ec{j}_{\scriptscriptstyle \mathcal{CM}} ight angle$	$K_{e\partial}$

12 76.5 0.47 13 135.6 0.52 14 113.9 0.50 15 26.0 0.41	9 10 11	60.0 46.2 33.9	0.45 0.44 0.42				
15 26.0 0.41	12 13	76.5 135.6	0.47 0.52				

Варианты 17-24.

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси Oz. Вектор плотности потока электромагнитной энергии \vec{S} имеет вид: $\vec{S}(z,t) = \vec{S}_m \cos^2(\omega t - k \cdot z)$. Считая волновое число k и амплитудное значение S_m вектора \vec{S} известными и действительными величинами, что допустимо для однородной изотропной среды без эффектов поглощения, найти:

- 3) вектор напряжённости электрического поля \vec{E} этой волны как функцию времени t и координат точки наблюдения;
- 2) вектор напряжённости магнитного поля \vec{H} этой волны как функцию времени t и координат точки наблюдения;
- 3) объёмную плотность энергии w;
- 4 средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение $\langle S \rangle$ плотности потока энергии, переносимой этой волной;
- 6) вектор плотности тока смещения \vec{j}_{cm} ;
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle | \ \vec{j}_{\scriptscriptstyle CM} \ | \rangle$;
- 8) величину импульса K_{eo} (в единице объёма).
- 9) записать волновое уравнение для магнитной и электрической компонент рассматриваемой электромагнитной волны и изобразить схематично мгновенную фотографию этой волны.

Таблица исходных данных к задаче для вариантов 17-24.

Номер	Исходн данные за				О	преде.	ПИТЬ			
варианта	$S_m, \frac{\mathcal{J}\mathcal{H}}{c \cdot \mathcal{M}^2}$	k, m^{-1}	$ec{E}$	$ec{H}$	w	$\langle ec{S} angle$	$\langle S \rangle$	$ec{j}_{\scriptscriptstyle CM}$	$\langle\left ec{j}_{\scriptscriptstyle CM} ight angle$	$K_{e\partial}$

17	135.6	0.52				
18	26.0	0.41				
19	113.9	0.50				
20	33.9	0.42				
21	46.2	0.44				
22	60.0	0.45				
23	76.5	0.47				
24	93.5	0.48				

<u>Варианты 25-32.</u>

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в произвольном направлении в вакууме. Вектор напряжённости \vec{H} магнитного поля электромагнитной волны имеет вид: $\vec{H}(\vec{r},t) = \vec{H}_m \cos(\omega t - \vec{k} \ \vec{r} \)$. Считая волновой вектор \vec{k} и вектор амплитуды колебаний напряжённости магнитного поля волны \vec{H}_m известными и действительными величинами, что допустимо для однородной изотропной среды без эффектов поглощения, найти:

- 1) вектор напряжённости электрического поля $\vec{E}(\vec{r},t)$ этой волны как функцию времени t и радиус-вектора \vec{r} точки наблюдения;
- 2) объёмную плотность энергии $w(\vec{r},t)$;
- 3) вектор Пойнтинга \vec{S} ;
- 4) средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение $\langle S \rangle$ плотности потока энергии, переносимой этой волной;
- 6) вектор плотности тока смещения \vec{j}_{cu} ;
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle \mid \vec{j}_{\scriptscriptstyle CM} \mid \rangle$;
- 8) модуль импульса K_{eo} (в единице объёма).

Таблица исходных данных к задаче для вариантов 25-32.

Номер	Исходн данные за				Oı	предел	ІИТЬ			
варианта	$H_m, A/M$	k, m^{-1}	$ec{E}(ec{r},t)$	$w(\vec{r},t)$	\vec{S}	$\langle ec{S} angle$	$\langle S \rangle$	$ec{j}_{\scriptscriptstyle \mathcal{CM}}$	$\langle\left ec{j}_{\scriptscriptstyle CM} ight angle$	$K_{e\delta}$

27	25 26	0.26 0.30	0.41				
31 0.55 0.50	29	0.45	0.47				
	31	0.55	0.50				

Литература

Литвинов О.С., Горелик В.С. Электромагнитные волны и оптика. М.: Изд-во МГТУ им. Баумана, 2006.

Иродов И.Е. Волновые процессы. Основные законы. М.: БИНОМ. Лаборатория знаний, 2006.

Савельев И.В. Курс общей физики. Т. 2. Электричество. Колебания и волны. Волновая оптика. М.: Лань, 2007.

Сивухин Д.В. Общий курс физики. Т. 3. Электричество. М.: ФИЗМАТЛИТ, 2006.